网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx^3,若f(x)与g(x)在x→0是等价无穷小,求a,b,k值.


参考答案

参考解析
解析:
更多 “设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx^3,若f(x)与g(x)在x→0是等价无穷小,求a,b,k值.” 相关考题
考题 设f(x)=2^x-1,则当x→0时,f(x)是x的()。 A、高阶无穷小B、低阶无穷小C、等价无穷小D、同阶但不等价无穷

考题 设f(x)=3x,g(x)=x2,则函数g[f(x)]-f[g(x)]=_______________.

考题 设函数f(x)=x3-3x2-9x.求(I)函数f(x)的导数;(1I)函数f(x)在区间[1,4]的最大值与最小值.

考题 设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。 A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)

考题 函数f(x)=2x+3,g(x)=6x+k,且f[g(x)]=g[f(x)]则k=() A、0B、15C、10D、不存在

考题 设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:

考题 设f(x)=du,g(x)=(1-cost)dt,则当x→0时,f(x)是g(x)的()A.低阶无穷小 B.高阶无穷小 C.等价无穷小 D.同阶但非等价的无穷小

考题 设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )

考题 设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)

考题 设f(x)=(x-t)dt,则当x→0时,g(x)是f(x)的(). A.高阶无穷小 B.低阶无穷小 C.同阶但非等价的无穷小 D.等价无穷小

考题 设f(x)=dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的(). A.等价无穷小 B.同阶但非等价无穷小 C.高阶无穷小 D.低阶无穷小

考题 设f(x)=dt,g(x)=+,则当x→0时,f(x)是g(x)的(). A.低阶无穷小 B.高阶无穷小 C.等价无穷小 D.同阶但非等价的无穷小

考题 已知函数f(x)=|2x-3|+6,已知函数g(x)=kx+7,若f(x)与g(x)有且仅有一个交点,则k的值不可能为()。A.-(2/3) B.3/2 C.7/2 D.-(5/2)

考题 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x) B.当f'(x)≥0时,f(x)≤g(x) C.当f"(x)≥0时,f(x)≥g(x) D.当f"(x)≥0时,f(x)≤g(x)

考题 设函数f(χ)=χ+aln(1+χ)+bχsinχ,g(χ)=kχ3,若f(χ)与g(χ)在χ→0是等价无穷小,求a,b,k的值。

考题 已知函数f(x)=lg(x+1)。 (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。 A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值

考题 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)

考题 已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。

考题 已知函数f(x)=∣2x-3∣+6,已知函数g(x)=kx+7,若f(x)与g(x)有且仅有一个交点,则k的值不可能为( )。

考题 设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A、g[f(x)]在x=x0处有极大值B、g[f(x)]在x=x0处有极小值C、g[f(x)]在x=x0处有最小值D、g[f(x)]在x=x0既无极值也无最小值

考题 设f(x)=2x-3x=2,则当x→0时()。A、f(x)与x是等价无穷小B、f(x)与x同阶但非等价无穷小C、f(x)是比x高阶的无穷小D、f(x)是比x低阶无穷小

考题 问答题若F(x)是f(x)的一个原函数,G(x)是1/f(x)的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x)。

考题 单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]A f(x)/g(x)>f(a)/g(b)B f(x)/g(x)>f(b)/g(b)C f(x)g(x)>f(a)g(a)D f(x)g(x)>f(b)g(b)

考题 单选题设f(x)=2x+3x-2,则当x→0时(  )。A f(x)与x是等价无穷小量B f(x)与x是同阶但非等价无穷小量C f(x)是比x较高阶的无穷小量D f(x)是比x较低阶的无穷小量

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。