网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )


参考答案

参考解析
解析:
更多 “设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( ) ” 相关考题
考题 若函数y=f(x)是一随机变量的概率密度,则()一定成立。 A、y=f(x)的定义域为[0,1]B、y=f(x)非负C、y=f(x)的值域为[0,1]D、y=f(x)在(-∞,+∞)内连续

考题 设f(x)在[0,1]上可导,且满足f(1)=∫01xf(x)dx,证明:必有一点ξ∈(0,1),使得ξf(ξ)+f(ξ)=0.

考题 设f(x)、g(x)在区间[a,b]上连续,且g(x)<f(x)<m(m为常数),由曲线y=g(x),y=f(x),x=a及x=b所围平面图形绕直线y=m旋转而成的旋转体体积为( )。A. B. C. D.

考题 以下四个命题中,正确的是( )A.f′(x)在(0,1)内连续,则f′(x)在(0,1)内有界 B.f(x)在(0,1)内连续,则f(x)在(0,1)内有界 C.f′(x)在(0,1)内连续,则f(x)在(0,1)内有界 D.f(x)在(0,1)内连续,则f′(x)在(0,1)内有界

考题 设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)

考题 设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

考题 设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:

考题 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x) B.当f'(x)≥0时,f(x)≤g(x) C.当f"(x)≥0时,f(x)≥g(x) D.当f"(x)≥0时,f(x)≤g(x)

考题 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:   (Ⅰ)存在ξ∈(0,1),使得f'(ξ)=1;   (Ⅱ)存在η∈(-1,1),使得f"(η)+f'(η)=1.

考题 设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

考题 设函数f(x)在区间[0,1]上具有2阶导数,且,证明:   (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;   (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

考题 设,在x=0连续,且对任何x,y∈R有f(x﹢y)=f(x)﹢f(y) 证明:(1)f在R上连续;(2)f(x)=xf(1)。

考题 若函数f(x)在[0,1]上黎曼可积,则f(x)在[0,1]上( )。 A.连续 B.单调 C.可导 D.有界

考题 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)一g(x)=X3+x2+1,则f(1)+g(1)=( )。A.-3 B.-1 C.1 D.3

考题 设函数f(x)在(0,1)内可导,f'(x)>0,则f(x)在(0,1)内(  )A.单调减少 B.单调增加 C.为常量 D.不为常量,也不单调

考题 设函数f(x)与g(x)均在(a,b)可导,且满足f'(x)A.必有f(x)>g(x) B.必有f(x)C.必有f(x)=g(x) D.不能确定大小

考题 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)

考题 设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )

考题 已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。

考题 设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()A、公因式B、最大公因式C、最小公因式D、共用函数

考题 问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

考题 问答题设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。  (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式;  (2)证明:|f′(c)|<2a+b/2。

考题 问答题设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

考题 单选题设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()A 公因式B 最大公因式C 最小公因式D 共用函数

考题 问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

考题 单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]A f(x)/g(x)>f(a)/g(b)B f(x)/g(x)>f(b)/g(b)C f(x)g(x)>f(a)g(a)D f(x)g(x)>f(b)g(b)

考题 问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且对于(a,b)内一切x有f′(x)g(x)-f(x)g′(x)≠0。证明:如果f(x)在(a,b)内有两个零点,则介于两个零点之间,g(x)至少有一个零点。