网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
曲柄机构在其连杆AB的中点C与CD杆铰接,而CD杆又与DF杆铰接,DE杆可绕E点转动。曲柄OA以角速度ω= 8rad/s绕O点逆时针向转动。且OA = 25cm,DE=100cm。在图示瞬时,O、

A、B三点共在一水平线上,B、E两点在同一铅直线上,∠CDE=90°,则此时DE杆角速度ωDE的大小和方向为:


参考答案

参考解析
解析:提示:作平面运动的AB杆的瞬心为B,vc= vA/2,而ED定轴转动vD垂直于ED,且[vc]CD=[vD]CD。
更多 “曲柄机构在其连杆AB的中点C与CD杆铰接,而CD杆又与DF杆铰接,DE杆可绕E点转动。曲柄OA以角速度ω= 8rad/s绕O点逆时针向转动。且OA = 25cm,DE=100cm。在图示瞬时,O、A、B三点共在一水平线上,B、E两点在同一铅直线上,∠CDE=90°,则此时DE杆角速度ωDE的大小和方向为: ” 相关考题
考题 杆OA绕固定轴O转动,长为l,某瞬时杆端A点的加速度a如题52图所示。则该瞬时OA的角速度及角加速度为(  )。

考题 一平面机构曲柄长OA=r,以角速度ω0绕O轴逆时针向转动,在图示瞬时,摇杆O1N水平,连杆NK铅直。连杆上有一点D,其位置为DK=1/3NK,则此时D点的速度大小vD为:

考题 在图示定平面Oxy内,杆OA可绕轴O转动,杆AB在点A与杆OA铰接,即杆AB可绕点A转动。该系统称为双摆,其自由度数为: A.1个 B.2个 C.3个 D.4个

考题 杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度分别为:

考题 均质杆OA,重P,长l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆的角速度是(  )。

考题 图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:

考题 杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。

考题 图示四连杆机构OABO1中,OA=O1B=1/2AB=L,曲柄OA以角速度ω逆时针向转动。当φ=90%,而曲柄O1B重合于O1O的延长线上时,曲柄O1B上B点速度vB的大小和方向为:

考题 杆OA = l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度为:

考题 平面四连杆机构ABCD如图所示,如杆AB以等角速度ω= 1rad/s绕A轴顺时针向转动,则CD杆角速度ωCD的大小和方向为: A. ωCD= 0. 5rad/s,逆时针向 B. ωCD= 0. 5rad/s,顺时针向 C. ωCD= 0. 25rad/s,逆时针向 D. ωCD= 0. 25rad/s,顺时针向

考题 均质细直杆OA的质量为m,长为l,以匀角速度W绕O轴转动如图所示,此时将OA杆的惯性力系向O点简化。其惯性力主矢和惯性力主矩的数值分别为(  )。

考题 如图所示,曲柄OA长R,以匀角速度ω绕O轴转动,均质圆轮B在水平面上做纯滚动,其质量为m,半径为r。在图示瞬时,OA杆铅直。圆轮B对接触点C的动量矩为(  )mRrω。 A.0.5 B.1.0 C.1.5 D.2.0

考题 杆OA绕固定轴0转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA 的角速度及角加速度为:

考题 曲柄OA在如图30-9所示瞬时以ω的角速度绕轴O转动,并带动直角曲杆O1BC在如图所示平面内运动。若取套筒A为动点,杆O1BC为动系,则牵连速度大小为(  )。

考题 均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:

考题 在图机构中,曲柄OA以匀角速度ω0转动,且OA=r,又AB=AC=r。当曲柄OA与连杆AB位于同一铅垂线上时,OA⊥0C,此时连杆AB的角速度为(  )。

考题 在定平面Oxy 内,杆OA 可绕轴O 转动,杆AB 在点A 与杆OA 铰接,即杆AB 可绕点A 转动。该系统称为双摆,其自由度数为: (A)1 个 (B)2 个 (C)3 个 (D)4 个

考题 图示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为:

考题 如图4-71所示曲柄连杆机构中,OA=r,AB=2r,OA、 AB及滑块B质量均为m, 曲柄以ω的角速度绕O轴转动,则此时系统的动能为( )。

考题 杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图4-41所示,则该瞬时杆OA的角速度及角加速度为( )。