网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。

A.必取极大值
B.必取极小值
C.不可能取极值
D.是否取极值不能确定

参考答案

参考解析
解析:
更多 “设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。A.必取极大值 B.必取极小值 C.不可能取极值 D.是否取极值不能确定” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 设函数f(x)=lnx,g(x)=e2x+1,则f[g(x)]=______。

考题 设f(x)=3x,g(x)=x2,则函数g[f(x)]-f[g(x)]=_______________.

考题 设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。 A、f(x)g(x)h(x)B、[f(x)+g(x)]h(x)C、f(x)+g(x)D、f(x)+g(x)+h(x)

考题 设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。 A.f(f(x))B.g(f(x))C.f(g(x))D.g(g(x))

考题 设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。 A. f[g(x)] B. f[f(x)] C. g[f(x)] D. g[g(x)]

考题 设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。 A. [f(x)/g(x)]>[f(a)/g(b)] B. [f(x)/g(x)]>[f(b)/g(b)] C. f(x)g(x)>f(a)g(a) D. f(x)g(x)>f(b)g(b)

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处( )A.必取极大值 B.必取极小值 C.不可能取极值 D.是否取得极值不能确定

考题 设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

考题 设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。 A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值

考题 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)

考题 g(x)在(-∞,+∞)严格单调减,又f(x)在x=x0处有极大值,则必有():A、g(f(x))在x=x0处有极大值B、g(f(x))在x=x0处有极小值C、g(f(x))在x=x0处有最小值D、g(f(x))在x=x0既无极大也无极小值

考题 设f(x)是R上的函数,则下列叙述正确的是()。A、f(x)f(-x)是奇函数B、f(x)|f(x)|是奇函数C、f(x)-f(-x)是偶函数D、f(x)+f(-x)是偶函数

考题 设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

考题 设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A、g[f(x)]在x=x0处有极大值B、g[f(x)]在x=x0处有极小值C、g[f(x)]在x=x0处有最小值D、g[f(x)]在x=x0既无极值也无最小值

考题 设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A、F(x)+C也是f(x)的原函数,C为任意常数B、F(x)=G(x)+C,C为任意常数C、F(x)=G(x)+C,C为某个常数D、F’(x)=G’(x)

考题 单选题设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是()。A f[g(x)]B f[f(x)]C g[f(x)]D g[g(x)]

考题 填空题设f(x)=xex,则函数f(n)(x)在x=____处取最小值____。

考题 单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处(  )A 必取得极小值B 必取得极大值C 不可能取得极值D 可能取极大值,也可能去极小值

考题 单选题设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]A f(x)/g(x)>f(a)/g(b)B f(x)/g(x)>f(b)/g(b)C f(x)g(x)>f(a)g(a)D f(x)g(x)>f(b)g(b)

考题 单选题设两函数f(x)及g(x)都在x=a处取得极大值,则F(x)=f(x)g(x)在x=a处(  )A 必取极大值B 必取极小值C 不可能取极值D 是否取得极值不能确定

考题 单选题g(x)在(-∞,+∞)严格单调减,又f(x)在x=x0处有极大值,则必有():A g(f(x))在x=x0处有极大值B g(f(x))在x=x0处有极小值C g(f(x))在x=x0处有最小值D g(f(x))在x=x0既无极大也无极小值

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

考题 单选题设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。[2018年真题]A f[g(x)]B f[f(x)]C g[f(x)]D g[g(x)]

考题 单选题设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A g[f(x)]在x=x0处有极大值B g[f(x)]在x=x0处有极小值C g[f(x)]在x=x0处有最小值D g[f(x)]在x=x0既无极值也无最小值

考题 单选题设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。A F(x)+C也是f(x)的原函数,C为任意常数B F(x)=G(x)+C,C为任意常数C F(x)=G(x)+C,C为某个常数D F’(x)=G’(x)