网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求


参考答案

参考解析
解析:
所以,令x=y=1,且注意到g(1)=1,g'(1)=0,得
更多 “设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 设函数f(x)=x3-3x2-9x.求(I)函数f(x)的导数;(1I)函数f(x)在区间[1,4]的最大值与最小值.

考题 设两函数f(x)及g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处( )。A.必取极大值 B.必取极小值 C.不可能取极值 D.是否取极值不能确定

考题 函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。A.不是函数f(x)的驻点 B.一定是函数f(x)的极值点 C.一定不是函数f(x)的极值点 D.是否为函数f(x)的极值点,还不能确定

考题 设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),且对任何的c∈(0,1)( )

考题 A.只能确定一个具有连续偏导数的隐函数z=z(x,y) B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y) C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y) D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

考题 设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y) B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y) C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y) D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

考题 设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.

考题 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x) B.当f'(x)≥0时,f(x)≤g(x) C.当f"(x)≥0时,f(x)≥g(x) D.当f"(x)≥0时,f(x)≤g(x)

考题 设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0 B.f(0)>1,f"(0)C.f(0)0 D.f(0)

考题 设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.

考题 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:   (Ⅰ)存在ξ∈(0,1),使得f'(ξ)=1;   (Ⅱ)存在η∈(-1,1),使得f"(η)+f'(η)=1.

考题 设函数,(u)可导,z=f(sin y-sin x)+xy,则=__________.

考题 已知函数f(x,y)具有二阶连续偏导数,且,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分.

考题 下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数 B.设f(x)为单调函数,则f(x)也为单调函数 C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点 D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0

考题 已知函数f(x)=lg(x+1)。 (1)若0(2)若g(x)9;g 2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),求函数y-=g(x)x∈[1,2])的反函数。

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x) C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)

考题 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

考题 设函数f(x)=丨x丨,则函数在点x=0处()A、连续且可导B、连续且可微C、连续不可导D、不可连续不可微

考题 填空题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

考题 填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

考题 问答题设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

考题 单选题设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。A 一定不是函数的驻点B 一定是函数的极值点C 一定不是函数的极值点D 不能确定是否为函数的极值点

考题 单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。A 只能确定一个具有连续偏导数的隐函数z=z(x,y)B 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

考题 问答题设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。

考题 问答题设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。