网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

任何一个三元向量都可以由向量组:(1,0,0)’,(0,1,0)’,(0,0,1)’线性表示


参考答案和解析
正确
更多 “任何一个三元向量都可以由向量组:(1,0,0)’,(0,1,0)’,(0,0,1)’线性表示” 相关考题
考题 若a1,a2,……an是一个线性无关的n维向量组,则任何n维向量均可由它们线性表示。() 此题为判断题(对,错)。

考题 零向量可由任何向量组线性表示。() 此题为判断题(对,错)。

考题 向量组a₁=(1 ,2,3),a₂=(1,0,0),a₃=(1,1,0)线性___________.

考题 以下与向量组α1=(3,2,0),α2=(1,0,3),α3=(1,2,0)不等价的向量组是()。 A.(2,3,0),(1,0,3),(0,1,1)B.(1,0,0),(0,1,0),(0,0,1)C.(4,2,3),(2,2,3),(4,4,0)D.(3,2,0)(1,2,0),(0,1,0)

考题 设向量组I:α1,α2,αr可由向量组Ⅱ:β1,β2,βs,线性表示,则(53)。A.当r<s时,向量组Ⅱ必线性相关.B.当r<s时,向量组Ⅱ必线性相关.C.当r<s时,向量组Ⅰ必线性相关.D.当r<s时,向量组Ⅰ必线性相关.

考题 设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则A.当rB.当r>s时,向量组Ⅱ必线性相关 C.当rD.当r>s时,向量组Ⅰ必线性相关

考题 求向量组的秩和一个极大线性无关组,并把其余向量用此极大线性无关组线性表示。

考题 求向量组的一个极大无关组,并把其余向量用极大无关组线性表示。

考题 设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤S B.若向量组I线性相关,则r>s C.若向量组Ⅱ线性无关,则r≤s D.若向量组Ⅱ线性相关,则r>s

考题 A.向量组(Ⅰ)与(Ⅱ)都线性相关 B.向量组(Ⅰ)线性相关 C.向量组(Ⅱ)线性相关 D.向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

考题 3维向量组A:α1,α2,…,αM线性无关的充分必要条件是().A、对任意一组不全为0的数k1,k2,…,kM,都有后B、向量组A中任意两个向量都线性无关C、向量组A是正交向量组D、αM不能由线性表示

考题 单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A 向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B 向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C 向量组α1,…,αm与向量组β1,…,βm等价D 矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

考题 单选题设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)m线性表示,但不能由向量组(Ⅰ):α(→)1,α(→)2,…,α(→)m-1线性表示。记向量组(Ⅱ):α(→)1,α(→)2,…,α(→)m-1,β(→),则(  )。A α(→)m不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示B α(→)m不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示C α(→)m可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示D α(→)m可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示

考题 单选题向量组α(→)1,α(→)2,…,α(→)s线性无关的充分条件是(  )。A α(→)1,α(→)2,…,α(→)s均不为零向量B α(→)1,α(→)2,…,α(→)s中任意两个向量的分量不成比例C α(→)1,α(→)2,…,α(→)s中任意一个向量均不能由其余s-1个向量线性表示D α(→)1,α(→)2,…,α(→)s中有一部分向量线性无关

考题 单选题俯视图的视点为()A 1,0,0B 0,1,0C 0,0,1D -1,0,0

考题 单选题设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).A αm不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示B αm不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示C αm可以由(Ⅰ)线性表示,也可由(Ⅱ)线性表示D αm可由(Ⅰ)线性表示,不可由(Ⅱ)线性表示

考题 单选题向量组α(→)1,α(→)2,…,α(→)s线性相关的充要条件是(  )。A α(→)1,α(→)2,…,α(→)s均为零向量B 其中有一个部分组线性相关C α(→)1,α(→)2,…,α(→)s中任意一个向量都能由其余向量线性表示D 其中至少有一个向量可以表为其余向量的线性组合

考题 问答题设向量β(→)可由向量组α(→)1,α(→)2,…,α(→)r线性表示,但不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示,证明:  (1)α(→)r不能由向量组α(→)1,α(→)2,…,α(→)r-1线性表示;  (2)α(→)r能由α(→)1,α(→)2,…,α(→)r,β(→)线性表示。

考题 单选题设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).A r<s时,向量组(Ⅱ)必线性相关B r>s时,向量组(Ⅱ)必线性相关C r<s时,向量组(Ⅰ)必线性相关D r>s时,向量组(Ⅰ)必线性相关

考题 单选题设n阶方阵A=(α(→)1,α(→)2,…,α(→)n),B=(β(→)1,β(→)2,…,β(→)n),AB=(γ(→)1,γ(→)2,…,γ(→)n),记向量组(Ⅰ):α(→)1,α(→)2,…,α(→)n;(Ⅱ): β(→)1,β(→)2,…,β(→)n;(Ⅲ):γ(→)1,γ(→)2,…,γ(→)n。如果向量组(Ⅲ)线性相关,则(  )。A 向量组(Ⅰ)与(Ⅱ)都线性相关B 向量组(Ⅰ)线性相关C 向量组(Ⅱ)线性相关D 向量组(Ⅰ)与(Ⅱ)中至少有一个线性相关

考题 问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明:  (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组;  (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。

考题 单选题n维向量组,α(→)1,α(→)2,…,α(→)s(3≤s≤n)线性无关的充要条件是(  )。A 存在一组不全为0的数k1,k2,…,ks,使kα(→)1+k2α(→)2+…+ksα(→)s≠0(→)B α(→)1,α(→)2,…,α(→)s中任意两个向量都线性无关C α(→)1,α(→)2,…,α(→)s中存在一个向量不能由其余向量线性表示D α(→)1,α(→)2,…,α(→)s中任何一个向量都不能由其余向量线性表示

考题 单选题设向量组的秩为r,则:()A 该向量组所含向量的个数必大于rB 该向量级中任何r个向量必线性无关,任何r+1个向量必线性相关C 该向量组中有r个向量线性无关,有r+1个向量线性相关D 该向量组中有r个向量线性无关,任何r+1个向量必线性相关

考题 单选题设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则(  ).A (Ⅰ)是(Ⅱ)的极大线性无关组B r(Ⅰ)=r(Ⅱ)C 当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D 当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)

考题 单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是(  )。A 向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B 向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C 向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D 矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价