网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

均匀细棒可绕通过其一端而与棒垂直的水平轴转动,开始时杆静止在水平位置,释放后杆转了θ角,则杆的转动动能增量等于

A.重力矩的功

B.重力矩功的负值

C.重力的冲量矩

D.重力的冲量矩的负值


参考答案和解析
角速度由小变大
更多 “均匀细棒可绕通过其一端而与棒垂直的水平轴转动,开始时杆静止在水平位置,释放后杆转了θ角,则杆的转动动能增量等于A.重力矩的功B.重力矩功的负值C.重力的冲量矩D.重力的冲量矩的负值” 相关考题
考题 一均匀细杆可绕通过上端与杆垂直的水平光滑轴O旋转,初始状态为静止悬挂,现有一个小球向左方水平打击细杆,设小球与轴杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统() A、机械能守恒B、动量守恒C、对转轴的角动量守恒D、机械能,动量和角动量都不守恒

考题 质量为m,长为2l的均质杆初始位于水平位置, 如图所示。A端脱落后,杆绕轴B转动,当杆转到铅垂位置时,AB 杆B处的约束力大小为:

考题 均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图所示,则AB杆的动能为:

考题 在图示定平面Oxy内,杆OA可绕轴O转动,杆AB在点A与杆OA铰接,即杆AB可绕点A转动。该系统称为双摆,其自由度数为: A.1个 B.2个 C.3个 D.4个

考题 T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在该位置对O轴的动量矩为:

考题 均质杆OA,重P,长l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆的角速度是(  )。

考题 匀质杆质量为m,长OA=l,在铅垂面内绕定轴o转动。杆质心C处连接刚度系数是较大的弹簧,弹簧另端固定。图示位置为弹簧原长,当杆由此位置逆时针方向转动时,杆上A点的速度为VA,若杆落至水平位置的角速度为零,则vA的大小应为:

考题 图示质量为m、长为l的杆OA以的角速度绕轴O转动,则其动量为:

考题 质量不计的水平细杆AB长为L,在铅垂图面内绕A轴转动,其另一段固连质量为m的质点B,在图示水平位置静止释放,则此瞬时质点B的惯性力为(  )。

考题 在光滑的水平面上,放置一静止的均质直杆AB。当AB上受一力偶m作用时,AB将绕哪一点转动? A.A 点 B.B 点 C.C点 D.先绕A点转动;然后绕C点转动

考题 均质圆柱体半径为R,质量为m,绕与纸面垂直的固定水平轴自由转动,初瞬时静止(θ=0°),如图所示,则圆柱体在任意位置θ时的角速度是(  )。

考题 在光滑水平面上,放置一静止的匀质直杆AB,当AB上受一力偶m作用时,AB将绕( )转动。 A.A.点 B.B.点 C.C.点 D.先绕A.点转动,然后绕C.点转动

考题 均质杆OA长L,可在铅直平面内绕水平固定轴O转动。开始杆处在如图所示的稳定平衡位置。今欲使此杆转过1/4转而转到水平位置,应给予杆的另一端A点的速度vA的大小为:

考题 在定平面Oxy 内,杆OA 可绕轴O 转动,杆AB 在点A 与杆OA 铰接,即杆AB 可绕点A 转动。该系统称为双摆,其自由度数为: (A)1 个 (B)2 个 (C)3 个 (D)4 个

考题 如图所示质量为m、长为l的均质杆OA绕O轴在铅垂平面内作定轴转动。已知某瞬时杆的角速度为ω,角加速度为α,则杆惯性力系合力的大小为(  )。

考题 忽略质量的细杆OC=l,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度ω绕轴O转动。系统的动能是:

考题 T形均质杆OABC以匀角速度ω绕O轴转动,如图所示。已知OA杆的质量为2m,长为2l,BC杆质量为m,长为l,则T形杆在图示位置时动量的大小为:

考题 质量为m,长为2l的均质细杆初始位于水平位置,如图4-68所示。A端脱落后, 杆绕轴B转动,当杆转到铅垂位置时,AB杆B处的约束力大小为( )。

考题 如图4-65所示,忽略质量的细杆OC=l,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是( )。

考题 均质细直杆AB长为l,质量为m,以匀角速度ω绕O轴转动,如图4-69所示, 则AB杆的动能为( )。

考题 长为l质量为m的均匀细棒,绕一端点在水平面内作匀速率转动,已知棒中心点的线速率为v,则细棒的转动动能为()A、mv2/2B、2mv2/3C、mv2/6D、mv2/24

考题 正三角形截面压杆,其两端为球铰链约束,加载方向通过压杆轴线。当载荷超过临界值,压杆发生屈曲时,横截面将绕哪一根轴转动?现有四种答案,请判断哪一种()是正确的。A、绕y轴B、绕通过形心c的任意轴C、绕z轴D、绕y轴或z轴

考题 质量为M=0.03kg、长为l=0.2m的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为Ml2/12,棒上套有两个可沿棒滑动的小物体,它们的质量均为m=0.02kg.开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r=0.05m,棒以0.5prad/s的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度ω=()。

考题 质量可忽略的轻杆,长为L,质量都是m的两个质点分别固定于杆的中央和一端,此系统绕另一端点转动的转动惯量I1=();绕中央点的转动惯量I2=()。