网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

原问题的对偶问题有最优解,将最优解带入对偶问题的约束条件,发现第i个约束条件严格不等式成立,根据互补松弛定理,该线性规划原问题的最优解满足:

A.第i个约束条件满足等号

B.第i个约束条件严格不等号成立

C.第i个决策变量大于0

D.第i个决策变量为0


参考答案和解析
正确
更多 “原问题的对偶问题有最优解,将最优解带入对偶问题的约束条件,发现第i个约束条件严格不等式成立,根据互补松弛定理,该线性规划原问题的最优解满足:A.第i个约束条件满足等号B.第i个约束条件严格不等号成立C.第i个决策变量大于0D.第i个决策变量为0” 相关考题
考题 一对对偶问题有最优解的充要条件是()。A、原问题有可行解B、对偶问题有可行解C、两个都有可可行解D、任意一个有可行解

考题 若原问题无可行解,对偶问题有可行解,根据敏感性分析准则应该()。A、现有解仍为最优解B、用单纯形法求新的最优解C、用对偶单纯形法求新的最优解D、引入人工变量用单纯形法求新的最优解

考题 设M是线性规划问题,N是其对偶问题,则()不正确。 A.M有最优解,N不一定有最优解B.若M和N都有最优解,则二者最优值肯定相等C.若M无可行解,则N无有界最优解D.N的对偶问题为M

考题 如果原问题有最优解,则对偶问题一定具有()。 A.无穷多解B.无界解C.最优解D.不能确定

考题 如果线性规划问题的原问题有多重最优解,那么它的对偶问题也一定有多重最优解() 此题为判断题(对,错)。

考题 原问题有多重最优解,则对偶问题有多重最优解() 此题为判断题(对,错)。

考题 线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解

考题 原问题无最优解,则对偶问题无可行解( )

考题 如果原问题有最优解,则对偶问题一定具有()。A、无穷多解B、无界解C、最优解D、不能确定

考题 一个线性规划问题(P)与它的对偶问题(D)有关系()。A、(P)有可行解则(D)有最优解B、(P)、(D)均有可行解则都有最优解C、(P)可行(D)无解,则(P)无有限最优解D、(P)(D)互为对偶

考题 原问题与对偶问题都有可行解,则有()A、原问题有最优解,对偶问题可能没有最优解B、原问题与对偶问题可能都没有最优解C、可能一个问题有最优解,另一个问题具有无界解D、原问题与对偶问题都具有最优解

考题 一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A、(P)可行D.无解,则(P)无有限最优解B、(P)、D.均有可行解,则都有最优解C、(P)有可行解,则D.有最优解D、(P)D.互为对偶E、E.(P)有最优解,则有可行解

考题 若原问题有最优解,其对偶问题也一定有最优解。

考题 判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 互为对偶的两个问题存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题也有可行解C、原问题有最优解解,对偶问题可能没有最优解D、原问题无界解,对偶问题无可行解

考题 已知yi*为线性规划的对偶问题的最优解,若yi*>0,说明在最优生产计划中第i种资源已完全耗尽。

考题 互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

考题 满足线性规划问题全部约束条件的解称为()A、最优解B、基本解C、可行解D、多重解

考题 问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 单选题满足线性规划问题全部约束条件的解称为()A 最优解B 基本解C 可行解D 多重解

考题 单选题原问题与对偶问题都有可行解,则有()A 原问题有最优解,对偶问题可能没有最优解B 原问题与对偶问题可能都没有最优解C 可能一个问题有最优解,另一个问题具有无界解D 原问题与对偶问题都具有最优解

考题 单选题互为对偶的两个问题存在关系()A 原问题无可行解,对偶问题也无可行解B 对偶问题有可行解,原问题也有可行解C 原问题有最优解解,对偶问题可能没有最优解D 原问题无界解,对偶问题无可行解

考题 单选题线性规划问题中只满足约束条件的解称为()。A 基本解B 最优解C 可行解D 基本可行解

考题 判断题若原问题有最优解,其对偶问题也一定有最优解。A 对B 错

考题 多选题一个线性规划问题(P)与它的对偶问题(D)有关系()。A(P)有可行解则(D)有最优解B(P)、(D)均有可行解则都有最优解C(P)可行(D)无解,则(P)无有限最优解D(P)(D)互为对偶

考题 多选题一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A(P)可行D.无解,则(P)无有限最优解B(P)、D.均有可行解,则都有最优解C(P)有可行解,则D.有最优解D(P)D.互为对偶EE.(P)有最优解,则有可行解

考题 单选题如果原问题有最优解,则对偶问题一定具有()。A 无穷多解B 无界解C 最优解D 不能确定