网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
原问题的对偶问题有最优解,将最优解带入对偶问题的约束条件,发现第i个约束条件严格不等式成立,根据互补松弛定理,该线性规划原问题的最优解满足:
A.第i个约束条件满足等号
B.第i个约束条件严格不等号成立
C.第i个决策变量大于0
D.第i个决策变量为0
参考答案和解析
正确
更多 “原问题的对偶问题有最优解,将最优解带入对偶问题的约束条件,发现第i个约束条件严格不等式成立,根据互补松弛定理,该线性规划原问题的最优解满足:A.第i个约束条件满足等号B.第i个约束条件严格不等号成立C.第i个决策变量大于0D.第i个决策变量为0” 相关考题
考题
线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
考题
互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解
B.对偶问题有可行解,原问题可能无可行解
C.若最优解存在,则最优解相同
D.一个问题无可行解,则另一个问题具有无界解
考题
一个线性规划问题(P)与它的对偶问题(D)有关系()。A、(P)有可行解则(D)有最优解B、(P)、(D)均有可行解则都有最优解C、(P)可行(D)无解,则(P)无有限最优解D、(P)(D)互为对偶
考题
原问题与对偶问题都有可行解,则有()A、原问题有最优解,对偶问题可能没有最优解B、原问题与对偶问题可能都没有最优解C、可能一个问题有最优解,另一个问题具有无界解D、原问题与对偶问题都具有最优解
考题
一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A、(P)可行D.无解,则(P)无有限最优解B、(P)、D.均有可行解,则都有最优解C、(P)有可行解,则D.有最优解D、(P)D.互为对偶E、E.(P)有最优解,则有可行解
考题
判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
考题
互为对偶的两个问题存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题也有可行解C、原问题有最优解解,对偶问题可能没有最优解D、原问题无界解,对偶问题无可行解
考题
互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解
考题
问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
考题
单选题原问题与对偶问题都有可行解,则有()A
原问题有最优解,对偶问题可能没有最优解B
原问题与对偶问题可能都没有最优解C
可能一个问题有最优解,另一个问题具有无界解D
原问题与对偶问题都具有最优解
考题
单选题互为对偶的两个问题存在关系()A
原问题无可行解,对偶问题也无可行解B
对偶问题有可行解,原问题也有可行解C
原问题有最优解解,对偶问题可能没有最优解D
原问题无界解,对偶问题无可行解
考题
多选题一个线性规划问题(P)与它的对偶问题(D)有关系()。A(P)有可行解则(D)有最优解B(P)、(D)均有可行解则都有最优解C(P)可行(D)无解,则(P)无有限最优解D(P)(D)互为对偶
考题
多选题一个线性规划问题(P)与它的对偶问题(D)存在下述那些关系()A(P)可行D.无解,则(P)无有限最优解B(P)、D.均有可行解,则都有最优解C(P)有可行解,则D.有最优解D(P)D.互为对偶EE.(P)有最优解,则有可行解
考题
单选题如果原问题有最优解,则对偶问题一定具有()。A
无穷多解B
无界解C
最优解D
不能确定
热门标签
最新试卷