网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

如果原问题的目标函数是凸函数,且限制条件是线性函数,则原问题的解和对偶问题的解相等。


参考答案和解析
正确
更多 “如果原问题的目标函数是凸函数,且限制条件是线性函数,则原问题的解和对偶问题的解相等。” 相关考题
考题 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。() 此题为判断题(对,错)。

考题 如果原问题为无界解,则对偶问题的解是()。 A. 无解B. 无穷多解C. 无界解D. 不能确定

考题 ● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或是极小,原问题可行解的目标函数值都一定超过其对偶问题可行解的目标函数值。() 此题为判断题(对,错)。

考题 用分枝定界法求极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的()A、原解B、上界C、下界D、最优解

考题 若原问题有可行解,但目标函数在可行域上无界,则对偶问题无可行解。()

考题 对偶问题的目标函数值和原问题的目标函数值在最优情况下是相等的() 此题为判断题(对,错)。

考题 对偶问题的目标函数总是与原问题的目标函数相等() 此题为判断题(对,错)。

考题 下列说法正确的为() 。 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

考题 线性规划问题由线性的目标函数和线性的约束条件(包括变量非负条件)组成。满足约束条件的所有解的集合称为可行解区。既满足约束条件,又使目标函数达到极值的解称为最优解。以下关于可行解区和最优解的叙述中,正确的是( )。A.线性规划问题的可行解区一定存在B.如果可行解区存在,则一定有界C.如果可行解区存在但无界,则一定不存在最优解D.如果最优解存在,则一定会在可行解区的某个顶点处达到

考题 线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个

考题 互为对偶的两个线性规划问题的解存在关系( )A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解

考题 关于线性规划的原问题和对偶问题,下列说法正确的是()A、若原问题为无界解,则对偶问题也为无界解B、若原问题无可行解,其对偶问题具有无界解或无可行解C、若原问题存在可行解,其对偶问题必存在可行解D、若原问题存在可行解,其对偶问题无可行解

考题 线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。A、“≥”B、“≤”C、“”D、“=”

考题 如果原问题为无界解,则对偶问题的解是()。A、无解B、无穷多解C、无界解D、不能确定

考题 判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 互为对偶的两个问题存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题也有可行解C、原问题有最优解解,对偶问题可能没有最优解D、原问题无界解,对偶问题无可行解

考题 若原问题可行,但目标函数无界,则对偶问题()。

考题 互为对偶的两个线性规划问题的解存在关系()A、原问题无可行解,对偶问题也无可行解B、对偶问题有可行解,原问题可能无可行解C、若最优解存在,则最优解相同D、一个问题无可行解,则另一个问题具有无界解

考题 如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()

考题 对偶问题有可行解,则原问题也有可行解()

考题 关于线性规划和其对偶规划的叙述中,正确的是()A、极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B、极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C、若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D、若对偶问题可行,则其目标函数无界的充要条件是原始问题可行

考题 问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。  (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。

考题 单选题如果原问题为无界解,则对偶问题的解是()。A 无解B 无穷多解C 无界解D 不能确定

考题 单选题关于线性规划的原问题和对偶问题,下列说法正确的是()A 若原问题为无界解,则对偶问题也为无界解B 若原问题无可行解,其对偶问题具有无界解或无可行解C 若原问题存在可行解,其对偶问题必存在可行解D 若原问题存在可行解,其对偶问题无可行解

考题 填空题若原问题可行,但目标函数无界,则对偶问题()。

考题 单选题互为对偶的两个问题存在关系()A 原问题无可行解,对偶问题也无可行解B 对偶问题有可行解,原问题也有可行解C 原问题有最优解解,对偶问题可能没有最优解D 原问题无界解,对偶问题无可行解

考题 判断题如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解。()A 对B 错