网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
f(X1,X2)在点X*处存在极小值的充分条件是:要求函数在X*处的Hessian矩阵H(X*)为()。
A
负定
B
正定
C
各阶方子式小于零
D
各阶方子式等于零
参考答案
参考解析
解析:
暂无解析
更多 “单选题f(X1,X2)在点X*处存在极小值的充分条件是:要求函数在X*处的Hessian矩阵H(X*)为()。A 负定B 正定C 各阶方子式小于零D 各阶方子式等于零” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0
B.f(a)=0且f′(a)≠0
C.f(a)>0且f′(a)>
D.f(a)<0且f′(a)<
考题
函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().A.x=0不是函数(x)的驻点
B.x=0不是函数(x)的极值点
C.x=0是函数(x)的极小值点
D.x=0是函数(x)的极大值点
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
A.Af(0)>1,f"(0)>0
B.f(0)>1,f"(0)C.f(0)0
D.f(0)
考题
设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么( )。
A.x=x1及x=x2都必不是f(x)的极值点
B.只有x=x1是f(x)的极值点
C.x=x1及x=x2都有可能是f(x)的极值点
D.只有x=x2是f(x)的极值点
考题
设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A、x=x1及x=x2都必不是f(x)的极值点B、只有x=x1是f(x)的极值点C、x=x1及x=x2都有可能是f(x)的极值点D、只有x=x2是f(x)的极值点
考题
单选题设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。A
x=x1及x=x2都必不是f(x)的极值点B
只有x=x1是f(x)的极值点C
x=x1及x=x2都有可能是f(x)的极值点D
只有x=x2是f(x)的极值点
考题
单选题若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使( )A
f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)B
f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)C
f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2)D
f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2)
考题
单选题若f(x)和g(x)在x=x0处都取得极小值,则函数F(x)=f(x)+g(x)在x=x0处( )A
必取得极小值B
必取得极大值C
不可能取得极值D
可能取极大值,也可能去极小值
考题
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A
对任意x,f′(x)>0B
对任意x,f′(x)≤0C
函数-f(-x)单调增加D
函数f(-x)单调增加
考题
单选题设函数f(x)={x2,x≤1;ax+b,x1},为使函数f(x)在x=1处连续且可导,则()。A
a=1,b=0B
a=0,b=1C
a=2,b=-1D
a=-1,b=2
热门标签
最新试卷