网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
名词解释题
直角定理逆定理
参考答案
参考解析
解析:
暂无解析
更多 “名词解释题直角定理逆定理” 相关考题
考题
泰勒斯领导的爱奥尼亚学派证明的“四条定理”(1)圆的直径将圆分为两个相等的部分.(2)等腰三角形两底角相等.(3)两相交直线形成的对顶角相等.(4)泰勒斯定理:半圆上的圆周角是直角。()
考题
初中数学《勾股定理》
一、考题回顾
题目来源1月6日 下午 黑龙江省哈尔滨市 面试考题
试讲题目1.题目:勾股定理
2.内容:
3.基本要求:
(1)要有板书;
(2)试讲十分钟左右;
(3)条理清晰,重点突出;
(4)学生掌握勾股定理的证明方法。
答辩题目1.勾股定理的教学过程中,体现了什么数学思想?
2.常见的三组勾股数是什么?
二、考题解析
【教学过程】
(一)引入新课
出示“国际数学家大会会徽”,提出问题:会徽图案有什么特别的含义吗?蕴含什么样的数学奥秘?
(二)探索新知
活动1:出示“毕达哥拉斯朋友家地板砖图”。
?
引导学生发现理解图形中全等的直角三角形的某种数量关系,并提出问题:等腰直角三角形三边长具有怎样的关系?引导学生利用面积规律整理归纳得出:等腰直角三角形两条直角边的平方和等于斜边的平方。
问题1:一般的直角三角形是否也具有类似规律?引导学生在网格图利用面积探究规律并归纳出:直角三角形两条直角边的平方和等于斜边的平方。
考题
“中心对称和中心对称图形”的教学目的主要有①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。②会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。
通过题干来完成下列教学设计。
(1)给出本课程的课题引入;
(2)根据教学目标设计教学环节;给出两个实例以进行知识探究。
考题
单选题护锥放样的勾股弦检查法,实际上是利用了()的勾股定理。A
矩形B
平行四边形C
直角三角形D
双直线形
热门标签
最新试卷