网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
某灯泡厂家称平均使用寿命在1100小时以上随机抽取25只,测得其平均寿命为991小时,标准差为39.02小时。服从正态分布,取显著性水平为0.01,厂家的说法是否成立。

参考答案

参考解析
更多 “某灯泡厂家称平均使用寿命在1100小时以上随机抽取25只,测得其平均寿命为991小时,标准差为39.02小时。服从正态分布,取显著性水平为0.01,厂家的说法是否成立。” 相关考题
考题 设某产品使用寿命X服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用()。 A、t检验法B、χ2检验法C、Z检验法D、F检验法

考题 从某轴承厂生产的轴承中随机抽取10000个样品组成一个样本,测得其平均寿命为 200000转,标准差为20转,则其样本均值的标准差约为( )转。A.0.2B.10C.20D.200

考题 某食品公司生产袋装食品,其容量服从正态分布,规定均值μ=245(ml),标准差σ=3(ml)。今从中随机抽取32袋,测得样本均值=246(ml)。检验袋平均容量是否符合规定要求的原假设H。为( )。A.μ=245B.μ≠245C.μ≥245D.μ≤245

考题 为了考察某种类型的电子元件的使用寿命情况,假定该电子元件使用寿命的分布是正态分布。而且根据历史记录得知该分布的参数为:平均使用寿命μ0为100小时,标准差口为10小时。现在随机抽取100个该类型的电子元件,测得平均寿命为102小时,给定显著性水平α=0.05,为了判断该电子元件的使用寿命是否有明显的提高,下列说法正确的有( )。A.提出假设H0:μ≤100;H1:μ>100B.提出假设H0:μ≥100;H1:μ<100C.检验统计量及所服从的概率分布为D.如果Z>Zα,则称与μ0的差异是显著的,这时拒绝H0E.检验结果认为该类型的电子元件的使用寿命确实有显著提高

考题 某食品公司生产袋装食品,其容量服从正态分布,规定均值μ=245(ml),标准差σ=3 (ml)。今从中随机抽取32袋,测得样本均值=246(ml)。 检验袋平均容量是否符合规定要求的原假设H0为( )。 A. μ=245 B. μ≠245 C. μ≤245 D. μ≥245

考题 某批木材的直径服从正态分布,从中随机抽取20根,测得平均直径为=32.5cm,样本标准差为15.问在显著性水平为0.05下,是否可以认为这批木材的直径为30cm?

考题 某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.8^2),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为=51.26(设生产过程中方差不改变),在显著性水平为a=0.05下,检验生产过程是否正常.

考题 设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平为0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.   附表:t分布表

考题 某商场从~批袋装食品中随机抽取10袋,测得每袋重量(单位:克)分别为789,780,794,762,802,813,770,785,810,806,假设重量服从正态分布,要求在5%的显著性水平下,检验这批食品平均每袋重量是否为800克。 根据上述资料请答: 选择的检验统计量是()。查看材料

考题 为了考察某种类型的电子元件的使用寿命情况,假定该电子元件使用寿命的分布是正态分布。而且根据历史记录得知该分布的参数为:平均使用寿命μ0为100小时,标准差a为10小时。现在随机抽取100个该类型的电子元件,测得平均寿命为102小时,给定显著性水平a=0.05,为了判断该电子元件的使用寿命是否有明显的提高,下列说法正确的有( )。

考题 某商场从一批袋装食品中随机抽取10袋,测得每袋重量(单位:克)分别为789,780,794,762,802,813,770,785,810,806,假设重量服从正态分布,要求在5%的显著性水平下,检验这批食品平均每袋重量是否为800克。 选择的检验统计量是()。

考题 厂家称其生产的电饭煲的合格率在95%以上。现随机抽取45只,得到样本合格率为92%。在α=0.01时,该厂家的说法是否成立?

考题 某灯泡厂家称其灯泡的平均使用寿命在1200小时以上。现从随机抽取25只,得到样本均值为1181.6小时,标准差为45.08小时服从正态分布。根据案例建立适当的原假设和备择假设。

考题 从某灯泡厂生产的灯泡中随机抽取100个样品组成一个样本,测得其平均寿命为2000小时,标准差为20小时,则其样本均值的标准差约为()A、20小时B、10小时C、2小时D、200小时

考题 对某厂日产10000个灯泡的使用寿命进行抽样调查,抽取100个灯泡,测得其平均寿命为1800小时,标准差为6小时。要求: (1)按68.27%概率计算抽样平均数的极限误差; (2)按以上条件,若极限误差不超过0.4小时,应抽取多少只灯泡进行测试; (3)按以上条件,若概率提高到95.45%,应抽取多少灯泡进行测试? (4)若极限误差为0.6小时,概率为95.45%,应抽取多少灯泡进行测试? (5)通过以上计算,说明极限误差、抽样单位数和概率之间的关系。

考题 某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。如果从中随机抽取30只灯泡进行检测,则样本均值()。A、抽样分布的标准差为4小时B、抽样分布近似等同于总体分布C、抽样分布的中位数为60小时D、抽样分布近似等同于正态分布,均值为60小时

考题 假设某班期末统计学考试成绩服从正态分布,平均成绩为70分,标准差为12分,要求计算: (1)随机抽取1人,该同学成绩在82分以上的概率; (2)随机抽取9人,其平均成绩在82分以上的概率。

考题 随机从某地人口总体中,抽得100人构成样本,测得100人的平均身高为168cm。又据经验和以往资料知身高服从正态分布,身高的标准差为4cm,问在1%和5%的显著性水平下,是否可认为人口总体的平均身高为167cm。

考题 某设备制造企业生产的小型设备服从平均寿命为40000小时的指数分布,抽取100个设备样本,计算出其平均寿命,则其平均寿命服从()A、均值为40000小时的指数分布B、近似为均值是40000小时,标准差为40000小时的正态分布C、近似为均值是40000小时,标准差为4000小时的正态分布D、近似为均值是40000小时,标准差为400小时的正态分布

考题 某灯泡公司生产的灯泡寿命服从均值为2000小时、标准差为30的威布尔分布,随机抽取100个样品组成一个样本做灯泡寿命试验,那样本寿命均值的分布应服从:()A、均值为2000,标准差为3的威布尔分布B、均值为2000,标准差为30的威布尔分布C、均值为2000,标准差为3的正态分布D、均值为2000,标准差为30的正态分布

考题 从平均寿命为1000小时寿命为指数分布的二极管中,抽取100件二极管,并求出其平均寿命。则().A、平均寿命仍为均值是1000小时的指数分布B、平均寿命近似为均值是1000小时,标准差为1000小时的正态分布C、平均寿命近似为均值是1000小时,标准差为100小时的正态分布D、以上答案都不对。

考题 设某地区高考成绩服从平均数为550,标准差为100的正态分布,随机抽取50人,以95.45%的概率保证程度估计该地区高考平均分数的区间在()分

考题 单选题某设备制造企业生产的小型设备服从平均寿命为40000小时的指数分布,抽取100个设备样本,计算出其平均寿命,则其平均寿命服从()A 均值为40000小时的指数分布B 近似为均值是40000小时,标准差为40000小时的正态分布C 近似为均值是40000小时,标准差为4000小时的正态分布D 近似为均值是40000小时,标准差为400小时的正态分布

考题 单选题某灯泡公司生产的灯泡寿命服从均值为2000小时、标准差为30的威布尔分布,随机抽取100个样品组成一个样本做灯泡寿命试验,那样本寿命均值的分布应服从:()A 均值为2000,标准差为3的威布尔分布B 均值为2000,标准差为30的威布尔分布C 均值为2000,标准差为3的正态分布D 均值为2000,标准差为30的正态分布

考题 单选题从某灯泡厂生产的灯泡中随机抽取100个样品组成一个样本,测得其平均寿命为2000小时,标准差为20小时,则其样本均值的标准差约为()A 20小时B 10小时C 2小时D 200小时

考题 不定项题某商场从一批袋装食品中随机抽取10袋,测得每袋重量(单位:克)分别为789,780,794,762,802,813,770,785,810,806,假设重量服从正态分布,要求在5%的显著性水平下,检验这批食品平均每袋重量是否为800克。 请根据上述资料请回答下列问题。在假设检验中,显著性水平表示( )。AP{接受Ho I Ho为假}BP{拒绝Ho I Ho为真}CP{拒绝H1 I H1为真}D取伪概率

考题 问答题某灯泡厂家称其灯泡的平均使用寿命在1200小时以上。现从随机抽取25只,得到样本均值为1181.6小时,标准差为45.08小时服从正态分布。根据案例建立适当的原假设和备择假设。