网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
X是线性规划的可行解,则错误的结论是()
- A、X可能是基本解
- B、X可能是基本可行解
- C、X满足所有约束条件
- D、X是基本可行解
参考答案
更多 “X是线性规划的可行解,则错误的结论是()A、X可能是基本解B、X可能是基本可行解C、X满足所有约束条件D、X是基本可行解” 相关考题
考题
● 线性规划问题就是面向实际应用,求解一组非负变量,使其满是给定的一组线性约束条件,并使某个线性目标函数达到极值。满是这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是(56)。(56)A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
考题
用图解法求解一个关于最大利润的线性规划问题时,若其等利润线与可行解区域相交,但不存在可行解区域最边缘的等利润线,则该线性规划问题( )。
A 、有无穷多个最优解B 、有可行解但无最优解C 、有可行解且有最优解D 、无可行解
考题
下列说法正确的为() 。
A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目 标函数值都一定不超过其对偶问题可行解的目标函数D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解
考题
线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。以下关于求解线性规划问题的叙述中,不正确的是______。A.线性规划问题如果有最优解,则一定会在可行解域的某个顶点处达到B.线性规划问题中如果再增加一个约束条件,则可行解域将缩小或不变C.线性规划问题如果存在可行解,则一定有最优解D.线性规划问题的最优解只可能是0个、1个或无穷多个
考题
对于线性规划问题,下列说法正确的是()A、线性规划问题可能没有可行解B、在图解法上,线性规划问题的可行解区域都是“凸”区域C、线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D、上述说法都正确
考题
下列关于线性规划的解的情况的说法不正确的是()。A、最优解必定可在凸集的某一个顶点上达到。B、最优解也可能在凸集的某一条边界上达到。C、线性规划的可行域若有界,则一定有最优解。D、线性规划的可行域若无界,则一定无最优解。
考题
判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
考题
问答题判断下列说法是否正确,并说明为什么? (1)如线性规划问题的原文题存在可行解,则其对偶问题也一定存在可行解。 (2)如线性规划的对偶问题无可行解,则原问题也一定无可行解。 (3)如果线性规划问题的原问题和对偶问题都具有可行解,则该线性规划问题一定有有限最优解。
考题
单选题对于线性规划问题,下列说法正确的是()A
线性规划问题可能没有可行解B
在图解法上,线性规划问题的可行解区域都是“凸”区域C
线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D
上述说法都正确
考题
判断题若线性规划问题有可行解,则一定存在基本可行解。A
对B
错
热门标签
最新试卷