2021年MBA考试《数学》模拟试题(2021-07-10)
发布时间:2021-07-10
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理精选模拟习题10道,附答案解析,供您考前自测提升!
1、菱形的一边和等腰直角三角形的直角边相等,则菱形和三角形面积比是。()(1)菱形的一个角为60°(2)菱形的一个角为120°【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:如图所示,若条件(1)成立,则 AB =AD BD=a。菱形的另一条对角线,从而菱形的面积=。等腰直角三角形的面积,即二者面积之比为条件(1)充分。由条件(2)可知,菱形有一个角为60°.因此条件(2)也充分。
2、从由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有()。【问题求解】
A.186个
B.187个
C.190个
D.191个
E.192个
正确答案:E
答案解析:不能被5整除,则个位数只可能是1,2,3,4中的一个。不含0时,满足题意的四位数有;含有0时,满足题意的四位数有;故共有 96+96=192(个),
3、设a,b为实数,若ab<|ab|,则一定有()。【问题求解】
A.a<0,b<0
B.a>0,b<0
C.a0
D.ab<0
E.ab≥0
正确答案:D
答案解析:若ab0时,ab=|ab|,因此a,b只能一正一负,且ab<0。
4、直角边之和为12的直角三角形面积的最大值等于()。【问题求解】
A.16
B.18
C.20
D.22
E.不能确定
正确答案:B
答案解析:设两直角边长度分别为a,b,由已知a+b =12,面积,即当a=b=6时,最大。
5、当m的根的情况是()。【问题求解】
A.两负根
B.两异号根且负根绝对值大
C.无实根
D.两异号根且正根绝对值大
E.以上结论均不正确
正确答案:D
答案解析:当m,因此方程有两个不等的实数根,再由韦达定理,设为方程两根,则当m为两异号根且正根绝对值大。
6、过点M(-1,1),N(1,3),圆心在x轴上的圆的方程为()。【问题求解】
A.
B.
C.
D.
E.以上结论均不正确
正确答案:B
答案解析:设圆心为半径为r,则圆的方程为将M(-1,1),N(1,3)代入方程可得从而所求方程为
7、的解是()。【问题求解】
A.3
B.-7
C.3或-7
D.3或7
E.7
正确答案:C
答案解析:即整理得解析:得x=-7或x=3。
8、将5个黑球和3个白球排成一排,则每个白球的右邻必须为黑球的概率为()。【问题求解】
A.
B.
C.
D.
E.
正确答案:E
答案解析:总排法为8!,所求事件的排法分三个步骤完成:第一个步骤,将5个黑球排一排共5!种排法;第二个步骤,在最左边球前及每相邻两球的间隙的5个位置中选3个位置,共种选法;第三个步骤,将3个白球放入选好的3个位置,共3 !种放法。由乘法原理,所求事件的排法为,从而概率。
9、不等式的解集为()。【问题求解】
A.空集合
B.(1,2)
C.(2,4)
D.(-1,4)
E.以上结论均不正确
正确答案:A
答案解析:原不等式等价于,从而。因此,即 不等式无解。
10、已知|2x+1|+|2x-5|=定值,则x的取值范围为()。【问题求解】
A.
B.-1≤x≤1
C.
D.
E.以上结论均不正确
正确答案:D
答案解析:|2x+1|+ |2x -5|=定值,则需或成立,从而
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2021-07-30
- 2020-03-26
- 2021-05-26
- 2020-12-14
- 2021-10-22
- 2020-09-26
- 2021-02-20
- 2020-03-14
- 2020-07-06
- 2022-01-09
- 2021-11-24
- 2020-08-18
- 2020-04-06
- 2021-02-06
- 2020-08-02
- 2020-03-08
- 2021-05-18
- 2021-10-28
- 2020-10-03
- 2021-06-20
- 2020-03-19
- 2020-02-23
- 2021-04-30
- 2020-06-10
- 2020-02-08
- 2020-12-05
- 2020-03-08
- 2020-03-24
- 2020-12-18
- 2020-06-30