2021年MBA考试《数学》章节练习(2021-03-04)
发布时间:2021-03-04
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、N=125。()(1)有5本不同的书,从中选出3本送给3名同学,每人一本,共有Ⅳ种不同的选法(2)书店有5种不同的书,买3本送给3名同学,每人一本,共有Ⅳ种不同的送法【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1)。由条件(2),每人必须送一本书且只能送一本书,但同一种书可以送给多个人,此类问题可归纳为分房问题,这里人是“人”,书是“房”,因此不同送法为。
2、从长度为3,5,7,9,11的五条线段中,取3条作三角形,共能构成的不同三角形个数为()。【问题求解】
A.4
B.5
C.6
D.7
E.8
正确答案:D
答案解析:(1)若最长边为7,另外两边只能是3和5,仅1种;(2)若最长边为9,则另外两边可为3和7,5和7,共2种;(3)若最长边为11,则另外两边可为3和9,5和9,7和9,7和5,共4种;因此,可构成不同三角形的个数为1+2+4=7(种)。
3、N=1260。()(1)有实验员9人,分成3组,分别为2,3,4人,去进行内容相同的实验,共有N种不同的分法(2)有实验员9人,分成3组,分别为2,3,4人,去进行内容不同的实验,共有N种不同的分法【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),即条件(1)是充分的。由条件(2),即条件(2)不充分。
4、有甲、乙、丙三项任务,现从10人中选4人承担这三项任务,不同的选派方法共有2520种。(1)甲项任务需2人承担,乙和丙项任务各需1人承担(2)乙项任务需2人承担,甲和丙项任务各需1人承担【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:D
答案解析:由条件(1),从10人中依次选出2,1,1人分配承担甲、乙、丙三项任务,从而不同的选派方法为。同理,由条件(2)也可得选派方法为2520种。
5、从7人中选出4人排成一排,则共有()种不同排法。【问题求解】
A.720
B.840
C.860
D.800
E.780
正确答案:B
答案解析:共有
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2019-12-10
- 2021-04-15
- 2021-04-13
- 2020-01-27
- 2019-12-24
- 2021-04-09
- 2020-02-24
- 2021-05-22
- 2020-06-18
- 2021-02-14
- 2020-02-21
- 2021-08-30
- 2019-12-10
- 2021-03-29
- 2021-01-28
- 2020-09-06
- 2021-07-29
- 2020-01-12
- 2019-12-21
- 2021-03-21
- 2019-12-24
- 2021-02-01
- 2020-11-16
- 2020-06-19
- 2021-06-10
- 2020-01-11
- 2020-11-26
- 2020-08-05
- 2021-06-24
- 2020-01-17