2021年MBA考试《数学》章节练习(2021-03-21)
发布时间:2021-03-21
2021年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。
1、N=125。()(1)有5本不同的书,从中选出3本送给3名同学,每人一本,共有Ⅳ种不同的选法(2)书店有5种不同的书,买3本送给3名同学,每人一本,共有Ⅳ种不同的送法【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:B
答案解析:由条件(1)。由条件(2),每人必须送一本书且只能送一本书,但同一种书可以送给多个人,此类问题可归纳为分房问题,这里人是“人”,书是“房”,因此不同送法为。
2、从4台甲型、5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各一台,则不同的取法共有()。【问题求解】
A.140种
B.84种
C.70种
D.35种
E.24种
正确答案:C
答案解析:从全体取法中去掉只取甲型或乙型的情况,因此应有
3、n=3。()(1)若(2)若【条件充分性判断】
A.条件(1)充分,但条件(2)不充分
B.条件(2)充分,但条件(1)不充分
C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分
D.条件(1)充分,条件(2)也充分
E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分
正确答案:A
答案解析:由条件(1),得(2n+1)(2n)(2n-1)(2n-2)=140n(n-1)(n-2),即,即,因为且n为整数,所以n=3,即条件(1)是充分的。由条件(2),可得 n(n-1)(n-2)(n-3)=24n(n-1)(n-2),整理得:n(n-1)(n-2)(n-3-24)=0,即 n=0,n=1,n=2,n=27。由于n≥4,从而n=27,条件(2)不充分。
4、将3名医生和6名护士分配到三所医院,则每个医院分配1名医生和2名护士的分法共有()种。【问题求解】
A.600
B.580
C.540
D.480
E.460
正确答案:C
答案解析:共有
5、用六种不同的颜色涂在图中4个区域里,每个区域涂1种颜色,且相邻区域的颜色必须不同,则共有不同涂法()种。【问题求解】
A.1200
B.880
C.820
D.780
E.750
正确答案:E
答案解析:分四个步骤完成,共有6×5×5×5=750(种)涂法。
下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
- 2020-05-07
- 2020-10-02
- 2020-01-18
- 2020-12-20
- 2021-04-26
- 2019-10-31
- 2019-12-04
- 2021-09-05
- 2020-03-25
- 2020-06-25
- 2021-07-07
- 2020-08-21
- 2020-10-23
- 2019-12-21
- 2020-08-29
- 2021-02-05
- 2020-04-03
- 2019-12-24
- 2020-11-13
- 2021-04-04
- 2020-03-04
- 2021-04-22
- 2021-05-19
- 2020-06-10
- 2021-08-07
- 2021-05-31
- 2021-04-28
- 2020-08-11
- 2021-03-04
- 2019-12-29