2020年MBA考试《数学》章节练习(2020-02-21)

发布时间:2020-02-21


2020年MBA考试《数学》考试共25题,分为问题求解和条件充分性判断。小编为您整理第九章 排列与组合5道练习题,附答案解析,供您备考练习。


1、4位老师分别教4个班的课,考试时要求老师不在本班监考,则不同的监考方法共有()。【问题求解】

A.8种

B.9种

C.10种

D.11种

E.12种

正确答案:B

答案解析:设教师A,B,C,D分别教甲、乙、丙、丁四个班,A有3种可能,监考乙、丙或丁班。若选定乙班,B,C和D三人监考甲、丙和丁班,有3种可能方法,即总共有3×3=9种不同方法。

2、

将4本书分给甲、乙、丙3人,不同的分配方法的种数是

。()
(1)每人至少1本

(2)甲只能分到1本

【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:A

答案解析:由条件(1),先从甲、乙、丙3人中选出1人准备分给2本书,再从4本书中选出2本分给此人,共有

种分法,最后将剩余的2本书分给2人,有2种分法,由乘法原理,总分法为

即条件(1)是充分的。
由条件(2),可得分法为

3、将一颗骰子连续抛掷两次,点数分别为a,b,则使一元二次方程

无实数解的抛掷法共有()种。【问题求解】

A.24

B.20

C.18

D.17

E.16

正确答案:D

答案解析:方程

无实数根的充分必要条件为

从而满足条件的(a,b)为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,5),(4,6),共17种。

4、N=3600。()
(1)7个人排成一排,甲在排头的排法共有N种
(2)7个人排成一排,甲不在排头也不在排尾的排法共有N种【条件充分性判断】

A.条件(1)充分,但条件(2)不充分

B.条件(2)充分,但条件(1)不充分

C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D.条件(1)充分,条件(2)也充分

E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

正确答案:B

答案解析:由条件(1),甲在排头的排法共有

,从而条件(1)不充分。
由条件(2),先排甲有

种不同方法,再排余下的6人有

种,所以应用乘法原理,

,即条件(2)充分。

5、汽车上有10名乘客,沿途设有5个车站,乘客下车的不同方式共有()。【问题求解】

A.

B.

C.

D.

E.以上结论均不正确

正确答案:C

答案解析:用乘法原理,第一步,安排第一个乘客下车,有5种方式;第二步,安排第二个乘客下车,也有5种方式;依次类推,10名乘客下车的方式共有

种.


下面小编为大家准备了 MBA考试 的相关考题,供大家学习参考。

声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。