2021研究生考试时间安排 海南省
发布时间:2020-02-04
2020研究生考试已经成为过去,2021研究生考试也在进行倒计时。考研未启,计划先行。由于2021研究生考试时间安排暂未公布,我们可以参考2020研究生考试时间安排。
2020年3月前,应该先确定目标及专业,明白自己为什么而考研,根据本科专业、就业意向、学习基础、个人兴趣等因素,初步确定目标院校及专业,在制定学习计划,回归学习状态。
在3月份之前,要及时关注20考研考试难度、初试查分、国家线公布等,了解整体的考研情况。另外,大家要密切关注目标院校复试分数线及专业课真题,分析考试难度。综合考量,如果考生方便,可以到复试现场,了解一下复试科目、内容等,尽可能去结识进入复试的学长学姐,为以后考研做下铺垫。
2020年3月-6月是基础阶段,这阶段重点是整理知识体系。需要背诵的看一到两遍专业课参考书,整理知识结构。这个阶段结束后要能默写出相应知识要点。需要做题的(比如数学)把课本的习题都做一到两遍。如果课本已经掌握就找本难度符合考研深度的习题练习。可以适当穿插2-3套真题检验学习效果。英语单词书翻3遍,不一定都背下来,但是一定要有印象,为后面突击学习做足准备。
2020年7月-8月是黄金备考期,趁着暑假阶段抓紧备考,尤其对于应届生来说,因为大四开学,你会面临毕业论文,答辩,实习等等事情,所以时间紧,任务重,不能过于松懈。对于英语阅读部分掌握较差的考生,多攻克英语阅读,一篇篇吃透;数学在复习完教材的基础上,强化课后习题、真题的练习。
专业课可以针对参考书和资料的重点、难点部分做笔记,并开始背诵记忆。另外,政治复习也要开始了,根据考试大纲制定政治的学习计划,每天复习几个章节。争取暑假结束时,打下比较扎实的政治基础。
2020年9月-10月是研究生网上预报名和正式报名的日子。网上预报名是9月,10月是正式报名,预报名成功之后才可以进行正式报名,正式报名按照规定时间,进行审核缴费。
2020年11月是研究生考试准考证打印时间,准考证打印黑白彩打都行,无强制性要求。但是准考证必须使用A4纸打印,正、反两面在使用期间不得涂改或书写。
研究生考试一般是每年的12月,临近考试考生也不要慌乱哦,一定调整心态,心态也是制胜关键哦。
以上就是51题库考试学习网为各位考生分享的2021研究生考试时间,51题库考试学习网陪着大家一起加油,愿来年都能收获心仪的录取通知书。
下面小编为大家准备了 研究生入学 的相关考题,供大家学习参考。
成年男性红细胞计数高于女性的原因与下列哪项因素关系最密切?
A.EPO B. BPO C.生长激素 D.性激素
答案:D
解析:
雄激素可提高血浆中EPO浓度,促进红细胞生成。雌激素可降低红系祖细胞对EPO的反应,抑 制红细胞的生成。这是成年男性红细胞高于女性的主要原因。
当前和今后一个时期国际局势发展的基本态势是( )
A.总体和平、局部战争
B.总体一致、局部差异
C.总体缓和、局部紧张
D.总体稳定、局部动荡
答案:A,C,D
解析:
2003年6月印发的《“三个代表”重要思想学习纲要》中指出:“总体和平、局部战争,总体缓和、局部紧张,总体稳定、局部动荡,是当前和今后一个时期国际局势发展的基本态势.”B项不符合有关精神.
One of the biggest--and most lucrative-applications of artificial intelligence(AI)is in health care.And the capacity of ai to diagnose or predict disease risk is developing rapidly.In recent weeks researchers have unveiled AI models that scan retinal images to predict eye-and cardiovascular-disease risk,and that analyse mammograms to detect breast cancer.Some ai tools have already found their way into clinical practiceaI diagnostics have the potential to improve the delivery and effectiveness of health care.Many are a triumph for science,representing years of improvements in computing power and the neural networks that underlie deep learning.In this form of Al,computers process hundreds of thousands of labelled disease images,until they can classify the images unaided.In reports,researchers conclude that an algorithm is successful if it can identify a particular condition from such images as effectively as can pathologists and radiologists.But that alone does not mean the ai diagnostic is ready for the clinic.Many reports are best viewed as analogous to studies showing that a drug kills a pathogen in a Petri dish.Such studies are exciting but scientific process demands that the methods and materials be described in detail,and that the study is replicated and the drug tested in a progression of studies culminating in large clinical trials.This does not seem to be happening enough in ai diagnostics.Many in the field complain that too many developers are not taking the studies far enough.They are not applying the evidence-based approaches that are established in mature fields,such as drug development These details matter.For instance,one investigation published last year found that an model detected breast cancer in whole slide images better than did 11 pathologists who were allowed assessment times of about one minute per image.However,a pathologist given unlimited time performed as well as al,and found difficult-to-detect cases more often than the computers Some issues might not appear until the tool is applied.For example,a diagnostic algorithm might incorrectly associate images produced using a particular device with a disease--but only because,during the training process,the clinic using that device saw more people with the disease than did another clinic uSing a different device These problems can be overcome.One way is for doctors who deploy aI diagnostic tools in the clinic to track results and report them so that retrospective studies expose any deficiencies.better yet such tools should be developed rigorously-trained on extensive data and validated in controlled studies that undergo peer review.This is slow and difficult,in part because privacy concerns can make it hard for researchers to access the massive amounts of medical data needed.A News story in Nature discusses one possible answer:researchers are building blockchain-based systems to encourage patients to securey share information.At present,human oversight will probably prevent weaknesses in ai diagnosis from being a matter of life or death.That is why regulatory bodies,such as the US Food and Drug Administration,allow doctors to pilot technologies classified as low risk But lack of rigour does carry immediate risks the hype-fail cycle could discourage others from investing in similar techniques that might be better.Sometimes,in a competitive field such as al,a well-publicized set of results can be enough to stop rivals from entering the same field Slow and careful research is a better approach.Backed by reliable data and robust methods,it may take longer,and will not churn out as many crowd-pleasing announcements.But it could prevent deaths and change lives
答案:
解析:
在报告中,研究者总结道,如果一种算法能和病理医生和放射科医师一样,在此类图像中有效识别特定疾患,这样的算法就算成功。主干识别researchers conclude that.,切分成分:1,an algorithm is8ceu宾语从句主干:2,if it can 2,as can pathologists and radiologists=as pathologists and radiologists can(identify l Ridentify a particular condition from such images状语从句;3.as effectively as can pathologists and radiologists为as本句涉及as.as比较状语从句的翻译。下面整理总结此句型常见结构,希望考生能够掌握翻译技巧,提升翻译能力。not as/so.as.句型例句:People are not so honest as they once were次,跟士人译文:人们现在不如过去那样诚实了。as.as.句型例句:My parcel is as heavy as yours译文我的包裹和你的包裹一样重。时人知密能液三、not so much.as.句型通常翻译为“与其说……不如说…”例句:The oceans do not so much divide the world as unite it译文:海洋与其说是把世界分割开来,还不如说是把世界连接在一起。四、not so much as.句型例句:He didn10much.k me to set d,里面个表第中结译文:他甚至没有请我坐下。
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:contact@51tk.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。