网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设容量为16人的简单随机样本,平均完成工作需时13分钟。已知总体标准差为3分钟。若想对完成工作所需时间总体构造一个90%置信区间,则()

  • A、应用标准正态概率表查出u值
  • B、应用t分布表查出t值
  • C、应用卡方分布表查出卡方值
  • D、应用F分布表查出F值

参考答案

更多 “设容量为16人的简单随机样本,平均完成工作需时13分钟。已知总体标准差为3分钟。若想对完成工作所需时间总体构造一个90%置信区间,则()A、应用标准正态概率表查出u值B、应用t分布表查出t值C、应用卡方分布表查出卡方值D、应用F分布表查出F值” 相关考题
考题 设X1,X2,…,X16是来自总体X~N(4,б2)的简单随机样本,б2已知,令,则统计量服从的概率密度函数为()

考题 设(X1,X2,…,Xn)(N≥2)为标准正态总体X的简单随机样本,则().

考题 设(X1,X2,X3)为来自总体X的简单随机样本,则下列不是统计量的是().

考题 设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().

考题 设正态总体X的方差为1,根据来自总体X的容量为100的简单随机样本测得样本的均值为5,则总体X的数学期望的置信度近似等于0.95的置信区间为_______.

考题 设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.

考题 设总体X的分布函数为      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:   (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.

考题 设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率

考题 设总体X的概率密度为为总体X的简单随机样本,其样本方差为S^2,则E(S^2)_______.

考题 设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).

考题 设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.

考题 设x为一个总体且E(x)=k,D(x)=1,X1,X2,…,xn为来自总体的简单随机样本,令,问n多大时才能使P?

考题 设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(X^k)=ak(k=1,2,3,4).   证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.

考题 设X~N(μ,σ^2),其中σ^2已知,μ为未知参数,从总体X中抽取容量为16的简单随机样本,且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ^2=_______.

考题 设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).

考题 设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,   X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.

考题 设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2= ,则E(S^2)=_______.

考题 设总体X~N(0,2^2),X1,X2,…,X30为总体X的简单随机样本,求统计量U=所服从的分布及自由度.

考题 若总体X~N(0,32),X1,X2,…,x9为来自总体样本容量为9的简单随机样本,则服从_______分布,其自由度为_______.

考题 设总体X服从正态分布N(μ,σ^2)(σ>0),X1,X1,…,Xn为来自总体X的简单随机样本,令Y=.,求Y的数学期望与方差

考题 设总体X的概率密度为      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.   (Ⅰ)求A;   (Ⅱ)求σ的最大似然估计量.

考题 设总体X的概率分布为    其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.

考题 设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值x= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为( )。 A.(30.88, 32.63) B.(31.45, 31.84) C.(31.62, 31.97) D.(30.45, 31.74)

考题 设总体X~N(u,σ2),基于来自总体X的容量为16的简单随机样本,测得样本均值图.png= 31.645,样本方差S2=0.09,则总体均值μ的置信度为0.98的置信区间为()。 A.(30.88, 32.63) B.(31.45, 31.84) C.(31.62, 31.97) D.(30.45, 31.74)

考题 设容量为25人的简单随机样本,平均完成工作时间13分钟,总体服从正态分布且标准差为3分钟。若想对完成工作所需时间构造一个90%置信区间,则()。A、应用t-分布表查出t值B、应用二项分布表查出p值C、应用标准正态概率表查出z值D、应用泊松分布表查出λ值

考题 对大小为7的总体进行简单随机抽样,样本容量为3,则有多少种可能的简单随机样本?()A、7B、21C、35D、343

考题 单选题设容量为16人的简单随机样本,平均完成工作需时13分钟。已知总体标准差为3分钟。若想对完成工作所需时间总体构造一个90%置信区间,则()A 应用标准正态概率表查出u值B 应用t分布表查出t值C 应用卡方分布表查出卡方值D 应用F分布表查出F值