网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
若f(-x)=f(x)(-∞<x<+∞),在(-∞,0)内,f′(x)>0,f″(x)<0,则在(0,+∞)内( )。
A
f(x)单调增加且其图像是向上凸的
B
f(x)单调增加且其图像是向上凹的
C
f(x)单调减少且其图像是向上凸的
D
f(x)单调减少且其图像是向上凹的
参考答案
参考解析
解析:
f(-x)=f(x)⇒f(x)为偶函数。可导偶函数的导数是奇函数,可导奇函数的导函数是偶函数。故f′(x)是奇函数,f″(x)是偶函数。由x∈(-∞,0)时,f′(x)>0,f″(x)<0,故x∈(0,+∞)时,f′(x)<0,f″(x)<0,则函数单调减少且其图像是向上凸的。
f(-x)=f(x)⇒f(x)为偶函数。可导偶函数的导数是奇函数,可导奇函数的导函数是偶函数。故f′(x)是奇函数,f″(x)是偶函数。由x∈(-∞,0)时,f′(x)>0,f″(x)<0,故x∈(0,+∞)时,f′(x)<0,f″(x)<0,则函数单调减少且其图像是向上凸的。
更多 “单选题若f(-x)=f(x)(-∞<x<+∞),在(-∞,0)内,f′(x)>0,f″(x)<0,则在(0,+∞)内( )。A f(x)单调增加且其图像是向上凸的B f(x)单调增加且其图像是向上凹的C f(x)单调减少且其图像是向上凸的D f(x)单调减少且其图像是向上凹的” 相关考题
考题
以下四个命题中,正确的是( )A.f′(x)在(0,1)内连续,则f′(x)在(0,1)内有界
B.f(x)在(0,1)内连续,则f(x)在(0,1)内有界
C.f′(x)在(0,1)内连续,则f(x)在(0,1)内有界
D.f(x)在(0,1)内连续,则f′(x)在(0,1)内有界
考题
A.F(x)在x=0点不连续
B.F(x)在(-∞,+∞)内连续,在x=0点不可导
C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)
D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)
考题
若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0
B.f′(x)<0,f″(x)>0
C.f′(x)>0,f″(x)<0
D.f′(x)>0,f″(x)>0
考题
设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
A. f'>0, f''>0 B.f'<0, f''<0
C. f'<0, f''>0 D. f'>0, f''<0
考题
设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上
A.A当f'(x)≥0时,f(x)≥g(x)
B.当f'(x)≥0时,f(x)≤g(x)
C.当f"(x)≥0时,f(x)≥g(x)
D.当f"(x)≥0时,f(x)≤g(x)
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
A. f'(x)>0,f''(x)>0 B. f(x) 0
C. f'(x)>0,f''(x)
考题
若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )A.f′(x)<f″(x)<0
B.f′(x)<f″(x)>0
C.f′(x)>f″(x)<0
D.f′(x)>f″(x)>0
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
考题
单选题设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A
f'(x)0,f"(x)0B
f'(x)0,f"(x)0C
f'(x)O,f"(x)0D
f'(x)0,f"(x)0
考题
单选题(2006)设f(x)在(-∞,+∞)上是奇函数,在(0,+∞)上f′(x)0,则在(-∞,0)上必有:()A
f′0,f″0B
f′0,f″0C
f′0,f″0D
f′0,f″0
考题
单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
考题
单选题设y=f(x)是y″-2y′+4y=0的一个解,若f(x0)>0且f′(x0)=0,则f(x)在点x0处( )。A
取得极大值B
某邻域内单调递增C
某邻域内单调递减D
取得极小值
考题
单选题设f(x)=-f(-x),x∈(-∞,+∞),且在(0,+∞)内f′(x)>0,f″(x)<0,则在(-∞,0)内( )。A
f′(x)>0,f″(x)>0B
f′(x)>0,f″(x)<0C
f′(x)<0,f″(x)>0D
f′(x)<0,f″(x)<0
考题
单选题若f(-x)=f(x)(-∞<x<+∞),在(-∞,0)内,f′(x)>0,f″(x)<0,则在(0,+∞)内( )。A
f(x)单调增加且其图像是向上凸的B
f(x)单调增加且其图像是向上凹的C
f(x)单调减少且其图像是向上凸的D
f(x)单调减少且其图像是向上凹的
考题
单选题若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )。A
f′(x)<0,f″(x)<0B
f′(x)<0,f″(x)>0C
f′(x)>0,f″(x)<0D
f′(x)>0,f″(x)>0
考题
单选题下列说法中正确的是( )。[2014年真题]A
若f′(x0)=0,则f(x0)必须是f(x)的极值B
若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
考题
单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是( )。[2013年真题]A
f′(x)>0,f″(x)<0B
f′(x)<0,f″(x)>0C
f′(x)>0,f″(x)>0D
f′(x)<0,f″(x)<0
考题
单选题函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)( )。A
没有零点B
至少有一个零点C
只有一个零点D
有无零点不能确定
考题
单选题(2013)若f(-x)=-f(x)(-∞0,f″(x)0,则f(x)在(0,+∞)内是:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
热门标签
最新试卷