网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
填空题
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。
参考答案
参考解析
解析:
由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。
由f′(x)=f(π/2-x),两边求导得f″(x)=-f′(π/2-x)=-f[π/2-(π/2-x)]=-f(x),即f″(x)+f(x)=0。
更多 “填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:
A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +c
C. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)
考题
设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
A.Af(0)>1,f"(0)>0
B.f(0)>1,f"(0)C.f(0)0
D.f(0)
考题
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为
A.AF^2(x)
B.F(x)F(y)
C.1-[1-F(x)]^2
D.[1-F(x)][1-F(y)]
考题
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。《》( )A.不是函数f(x)的驻点
B.一定是函数f(x)的极值点
C.一定不是函数f(x)的极值点
D.是否为函数f(x)的极值点,还不能确定
考题
若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()A、(f″(x)f(x)-[f′(x)]2)/[f(x)]2B、f″(x)/f′(x)C、(f″(x)f(x)+[f′(x)]2)/[f(x)]2D、ln″[f(x)]·f″(x)
考题
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A、F2(x)B、F(x)F(y)C、1-[1-F(x)]2D、[1-F(x)][1-F(y)]
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f″(x)+f(x)=0B
f′(x)+f(x)=0C
f″(x)+f′(x)=0D
f″(x)+f′(x)+f(x)=0
考题
单选题若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()A
(f″(x)f(x)-[f′(x)]2)/[f(x)]2B
f″(x)/f′(x)C
(f″(x)f(x)+[f′(x)]2)/[f(x)]2D
ln″[f(x)]·f″(x)
考题
单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为( )。A
F2(x)B
F(x)F(y)C
1-[1-F(x)]2D
[1-F(x)][1-F(y)]
考题
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。A
f′(x)+f(x)=0B
f′(x)-f(x)=0C
f″(x)+f(x)=0D
f″(x)-f(x)=0
热门标签
最新试卷