网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设函数f(x)在(一∞,+∞)内连续,其中二阶导数f”(x)的图形如图所示,则曲线y(x)的拐点的个数为( )个。

A、0
B、1
C、2
D、3

参考答案

参考解析
解析:拐点出现在二阶导数等于零,或二阶导数不存在的数,并且在这点的左右两侧二阶导函数异号。因此,由f”(x)的图形可得,曲线y=(x)存在两个拐点。
更多 “设函数f(x)在(一∞,+∞)内连续,其中二阶导数f”(x)的图形如图所示,则曲线y(x)的拐点的个数为( )个。 A、0 B、1 C、2 D、3 ” 相关考题
考题 以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

考题 函数f(x)二阶可导,且f’(x0)=0,则点(x0,f(x0))为曲线y=f(x)的拐点。() 此题为判断题(对,错)。

考题 设f(x)、f'(x)为已知的连续函数,则微分方程y'+ f'(x)y = f(x)f'(x)的通解是:

考题 设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0 B.f(0)>1,f"(0)C.f(0)0 D.f(0)

考题 设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.

考题 设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

考题 设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如图所示,则曲线y=f(x)的拐点个数为    A.A0 B.1 C.2 D.3

考题 已知函数f(x,y)具有二阶连续偏导数,且,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分.

考题 设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.

考题 设函数y-f(x)连续,除x=a外f''(x)均存在。一一阶导函数y'=f(x)的图形如下,则y=f(x) A.有两个极大值点,一个极小值点,一个拐点 B.有一个极大值点,一个极小值点,两个拐点 C.有一个极大值点,一个极小值点,一个拐点 D.有一个极大值点,两个极小值点,两个拐点

考题 设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )

考题 设y=f(x)在(a,6)内有二阶导数,且,f″>0,则曲线y=f(x)在(a,6)内().A.凹 B.凸 C.凹凸性不可确定 D.单调减少

考题 设函数f(χ)在(-∞,+∞)内连续,其中二阶导数f”(χ)的图形如图所示,则曲线y=f(χ)的拐点的个数为( )。 A、0 B、1 C、2 D、3

考题 设函数f(χ)在(-∞,+∞)内连续,其中二阶导数f”(χ)的图形如图所示,则曲线y=f(χ)的拐点的个数为( )。 A、0 B、1 C、2 D、3

考题 设f(x)具有二阶导数,y=f(x2),则的值为()。

考题 设f(x)=|x(1-x)|,则( ).《》( )A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点 B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点 C.x=0是f(x)的极值点,且(0,0)是曲线y=f(x)的拐点 D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点

考题 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

考题 若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()A、(f″(x)f(x)-[f′(x)]2)/[f(x)]2B、f″(x)/f′(x)C、(f″(x)f(x)+[f′(x)]2)/[f(x)]2D、ln″[f(x)]·f″(x)

考题 填空题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

考题 单选题设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。A f(0)是f(x)的极大值B f(0)是f(x)的极小值C 点(0,f(0))是曲线y=f(x)的拐点D f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f″(x)+f(x)=0B f′(x)+f(x)=0C f″(x)+f′(x)=0D f″(x)+f′(x)+f(x)=0

考题 单选题设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则(  )。A f(0)=1为f(x)的极小值B f(0)=1为f(x)的极大值C (0,f(0))为曲线y=f(x)的拐点D 由g(x)才能确定f(x)的极值或拐点

考题 单选题若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()A (f″(x)f(x)-[f′(x)]2)/[f(x)]2B f″(x)/f′(x)C (f″(x)f(x)+[f′(x)]2)/[f(x)]2D ln″[f(x)]·f″(x)

考题 填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

考题 判断题设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。A 对B 错

考题 问答题设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f′(x)+f(x)=0B f′(x)-f(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0