网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
(1)求lAl;
(2)已知线性方程组AX-b有无穷多解,求a,并求AX=b的通解。


参考答案

参考解析
解析:
更多 “设(1)求lAl; (2)已知线性方程组AX-b有无穷多解,求a,并求AX=b的通解。 ” 相关考题
考题 设基带传输系统的总的传输特性fH如图1所示,试求: 设基带传输系统的总的传输特性H(f)如图1所示,试求:

考题 设y=ln(1+sinx),求y'。

考题 设函数(x)=1+sin2x,求'(0).

考题 设函数y=ln(x2+1),求dy.

考题 设矩阵(a,b,c,d均为实数)(1)计算;(2)利用(1)的结果,求detM.

考题 设X~N(0,1),y=X^2,求y的概率密度函数.

考题 设(X,Y)的联合密度函数为f(x,y)=   (1)求a;(2)求X,Y的边缘密度,并判断其独立性;(3)求.

考题 设(Ⅰ),(Ⅱ)   (1)求(Ⅰ),(Ⅱ)的基础解系;(2)求(Ⅰ),(Ⅱ)的公共解.

考题 设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.

考题 设A为n×1矩阵,矩阵.试证B为对称矩阵.如果A=(1,-1,2)T,求B.

考题 设矩阵相似于矩阵. (1)求a,b的值;(2)求可逆矩阵P,使为对角阵

考题 设连续型随机变量X的分布函数为F(x)=   (1)求常数A,B;(2)求X的密度函数f(x);(3)求P

考题 设 ,求.

考题 设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).

考题 设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;   (2)求y的边缘密度函数.

考题 设曲线L的方程为 , (I)求L的弧长; (II)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标

考题 设A是三阶实对称矩阵,r(A)=1,A^2-3A=O,设(1,1,-1)t为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.

考题 设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

考题 设,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B

考题 设(X,Y)在区域D:0  (1)求随机变量X的边缘密度函数;(2)设Z=2X+1,求D(Z).

考题 设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.   设随机变量U=max{X,Y},V=min{X,Y}.   (1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;   (3)判断U,V是否相互独立?(4)求P(U=V).

考题 设随机变量X满足|X|≤1,且P(X=-1)=,P(X=1)=,在{-1  (1)求X的分布函数;(2)求P(X

考题 设矩阵A=   (1)已知A的一个特征值为3,试求y;   (2)求可逆矩阵P,使(AP)^T(AP)为对角矩阵.

考题 设函数(x)=2x3+3mx2-36x+m,且′(-1)=-36. (Ⅰ)求m; (Ⅱ)求(x)的单调区间.

考题 设f(1)=1,f(2)=2,f(3)=0,用三点式求f′(1)≈()

考题 LAL表示低液位开关。

考题 填空题设f(1)=1,f(2)=2,f(3)=0,用三点式求f′(1)≈()