网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上( )。
A.可微
B.连续
C.不连续点个数有限
D.有界
B.连续
C.不连续点个数有限
D.有界
参考答案
参考解析
解析:本题主要考查积分的知识。若函数在区间[a,b]上(黎曼)可积,则在[a,b]上必有界(可积的必要条件)。D项正确。
A项:因为在一元函数中,可微一定连续,且连续一定可积,但反之不成立。与题干不符,排除。
B、C项:可积的充分条件有以下3个:①函数在闭区间上连续;②函数在闭区间上有界且只有有限个间断点;③函数在闭区间上单调。与题干不符,排除。
A项:因为在一元函数中,可微一定连续,且连续一定可积,但反之不成立。与题干不符,排除。
B、C项:可积的充分条件有以下3个:①函数在闭区间上连续;②函数在闭区间上有界且只有有限个间断点;③函数在闭区间上单调。与题干不符,排除。
更多 “函数f(x)在[a,b]上黎曼可积的必要条件是f(x)在[a,b]上( )。 A.可微 B.连续 C.不连续点个数有限 D.有界” 相关考题
考题
设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
A. f'>0, f''>0 B.f'<0, f''<0
C. f'<0, f''>0 D. f'>0, f''<0
考题
设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
设f(x)为[a,b]上的连续函数,则下列命题不正确的是( )。A.f(x)在[a,b]上有最大值
B.f(x)在[a,b]上一致连续
C.f(x)在[a,b]上可积
D.f(x)在[a,b]上可导
考题
设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值
B.f(x)在(a,b)上必一致连续
C.f(x)在(a,b)上必有
D.f(x)在(a,b)上必连续
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
A. f'(x)>0,f''(x)>0 B. f(x) 0
C. f'(x)>0,f''(x)
考题
设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否为奇函数不能确定
考题
设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否是偶函数不能确定
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
考题
单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
考题
问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。
考题
单选题若函数F(x)在Dl上具有连续二阶导数(D是Dl内部的凸集),则F(x)为D上的凸函数的充分必要条件是F(x)的Hessian矩阵()A
半正定B
正定C
半负定D
负定
热门标签
最新试卷