网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
奇函数f(x)在闭区间[-1,1]上可导,且|f′(x)|≤M(M为正常数),则必有( )。
A
|f(x)|≥M
B
|f(x)|>M
C
|f(x)|≤M
D
|f(x)|<M
参考答案
参考解析
解析:
因为f(x)为奇函数,故f(0)=0。f(x)在[-1,1]上可导,由拉格朗日中值定理知|f(x)|=|f(x)-f(0)|=|f′(ξ)|·|x-0|≤M·1。故对∀x∈[-1,1],|f(x)|≤M。故应选(C)。
因为f(x)为奇函数,故f(0)=0。f(x)在[-1,1]上可导,由拉格朗日中值定理知|f(x)|=|f(x)-f(0)|=|f′(ξ)|·|x-0|≤M·1。故对∀x∈[-1,1],|f(x)|≤M。故应选(C)。
更多 “单选题奇函数f(x)在闭区间[-1,1]上可导,且|f′(x)|≤M(M为正常数),则必有( )。A |f(x)|≥MB |f(x)|>MC |f(x)|≤MD |f(x)|<M” 相关考题
考题
(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(A)若f(x) 是偶函数,则f(-x)是偶函数(B)若f(x)不是奇函数,则f(-x)不是奇函数(C)若f(-x)是奇函数,则f(x)是奇函数(D)若f(-x)不是奇函数,则f(x)不是奇函数
考题
设f(x)、g(x)在区间[a,b]上连续,且g(x)<f(x)<m(m为常数),由曲线y=g(x),y=f(x),x=a及x=b所围平面图形绕直线y=m旋转而成的旋转体体积为( )。A.
B.
C.
D.
考题
设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有
AF(x)是偶函数f(x)是奇函数
BF(x)是奇函数f(x)是偶函数
CF(x)是周期函数f(x)是周期函数
DF(x)是单调函数f(x)是单调函数
考题
设F(x)是连续函数f(x)的一个原函数,
表示“M的充分必要条件是N”,则必有( )。A.F(x)是偶函数f(x)是奇函数
B.F(x)是奇函数f(x)是偶函数
C.F(x)是周期函数f(x)是周期函数
D.F(x)是单调函数f(x)是单调函数
考题
已知函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为4,且f(1)>0,f(3)=
则m的取值范围是( )。A.-3<m<1
B.m>1或m<-3
C.-1<m<3
D.m>3或m<-1
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值
B.f(x)在(a,b)上必一致连续
C.f(x)在(a,b)上必有
D.f(x)在(a,b)上必连续
考题
下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0
B.若f'(xo)=0,则点xo必为f(x)的极值点
C.若f'(xo)≠0,则点xo必定不为f(x)的极值点
D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0
考题
命题“若f(x)为奇函数,则f(-x)为奇函数”的否命题( )。A.若f(x)为偶函数,则f(-x)为偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)为奇函数,则fD.若f(-x)为奇函数,则f(x)不是奇函数
考题
设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。A、F(x)是偶函数B、F(x)是奇函数C、F(x)可能是奇函数,也可能是偶函数D、F(x)是否为奇函数不能确定
考题
单选题设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是( )。A
奇函数B
偶函数C
周期函数D
单调函数
考题
单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内( )。A
没有实根B
有两个实根C
有无穷多个实根D
有且仅有一个实根
考题
单选题设F(x)是连续函数f(x)的一个原函数,“M⇔N”表示“M的充分必要条件是N”,则必有( )。A
F(x)是偶函数⇔f(x)是奇函数B
F(x)是奇函数⇔f(x)是偶函数C
F(x)是周期函数⇔f(x)是周期函数D
F(x)是单调函数⇔f(x)是单调函数
考题
问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。
热门标签
最新试卷