网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
如图7,在四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可)。


参考答案

参考解析
解析:
更多 “如图7,在四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可)。” 相关考题
考题 平行四边形ABCD的周长是28cm,CD-AD=2cm,则AB的长度是( )。A.8cmB.6cmC.7cmD.9cm

考题 在平行四边形ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F,⊙O在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止,试求⊙O滚过的路程.

考题 要使程序执行后的输出结果为ABCD,应在横线处添加语句( )。A.public AB.private AC.protected AD.virtual public A

考题 平行四边形中,已知AB、BC及其夹角∠ B(∠ B是锐角),能求出平行四边形ABCD的面积S吗?如果能,写出用AB,BC及其夹角∠ B表示S的式子。

考题 对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法②∠B大于90°左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:延长CD,过A作AN⊥BC于N;延长AB,过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法③∠B等于90°证明:∵∠B=∠D=90°;AB=CD;AC=AC∴△ABC=△ADC(HL)∴AB=CB∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。

考题 如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.

考题 如下图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.

考题 在平行四边形ABCD中,∠DAB=60,AB=15cm,已知圆O的半径等于3cm,AB,AD分别与圆O相切于点E,F.圆0在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止.试求圆O滚过的路程.

考题 如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2. (1)求证:AB=BC; (2)当BE⊥AD于E时,试证明:BE=AE+CD.

考题 若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD一定是( )。A.对角线相互垂直的四边形 B.矩形 C.对角线相等的四边形 D.菱形

考题 如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )cm2。

考题 如图,平面四边形ABCD中,AB=2,BC=4,CD=5,DA=3, (1)若∠B与∠D互补,求AC2的值; (2)求平面四边形ABCD面积的最大值。

考题 如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,则BE/EC的值为()。 A.1/3 B.4/9 C.5/9 D.2/3

考题 如图,已知图中四边形两条边的长度和三个角的度数,四边形ABCD的面积是______cm2。

考题 平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是: A.2︰7 B.3︰13 C.4︰19 D.5︰24

考题 如图,已知一个四边形中边AD长为3cm,边BC长7cm;∠DAB=135°,∠ABC=∠ADC=90°那么这个四边形的面积是( )。 A.49/4 B.21 C. D.20

考题 [0402]设甲:四边形ABCD是平行四边形,乙:四边形ABCD是正方形,则(  )A.甲是乙的充分条件,但不是乙的必要条件 B.甲是乙的必要条件,但不是乙的充分条件 C.甲是乙的充分必要条件 D.甲不是乙的充分条件,也不是乙的必要条件

考题 如,在四边形ABCD中,AB//CD,AB与CD的边长分别为4和8,若ABE的面积为4,则四边形ABCD的面积为( )A.24 B.30 C.32 D.36 E.40

考题 如图,在平行四边形ABCD中,已知三角形ABP、BPC的面积分别是73、100,那么三角形BPD的面积是多少? A.27 B.36.5 C.50 D.无法确定

考题 如图8,四边形ABCD内接于⊙O,若∠BCD=130o,则∠BOD=_______°。

考题 在学习了平行四边形、三角形的中位线定理后,某教师设计了一节习题课的教学目标: ①进一步理解三角形中位线定理、平行四边形的判定定理; ②能综合运用三角形中位线定理、平行四边形的判定定理等知识解决问题; ③提高发现和提出数学问题的能力。 他的教学过程设计中包含了下面的一道例题: 如图1,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。 问题一求证:四边形EFGH是平行四边形; 问题二如何改变问题中的条件.才能分别得到一个菱形、矩形、正方形 针对上述材料,完成下列任务: (1)结合该教师的教学目标,分析该例题的设计意图; (2)类比上述例题中的问题二,设计一个新问题,使之符合教学目标③的要求; (3)设计该例题的简要教学流程,并给出解题后的小结提纲。

考题 在学习了平行四边形、三角形的中位线定理后,某老师设计了一个教学目标。 ① 进一步理解三角形中位线定理和平行四边形判定定理 ② 运用三角形中位线定理、平行四边形判定定理解决问题 ③ 提高发现解决能力 他的教学过程设计包含以下一道例题:如图1,在四边形ABCD中,EFGH分别是AB、BC、CD、DA中点, 问题一、求证四边形EFGH是平行四边形。 问题二、如何改变问题条件,从而分别得到菱形、矩形、正方形。 针对上述材料,完成以下任务 (1)结合目标分析该例题设计意图(10分) (2)类比上述例题问题二设计一个新问题,使之符合教学目标③要求(8分) (3)设计该例题简要教学流程(8分)并给出解题的小结提纲(4分)

考题 如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8, AB∥DE,求△DEC的周长。

考题 如图,平行四边形ABCD的面积是54平方厘米,点E、F、G分别是平行四边形ABCD边上的中点,H为AD边上的任意一点,则阴影部分的面积为( )平方厘米。 A. 27 B. 28 C. 32 D. 36

考题 如图,平行四边形ABCD,∠ADC的角平分线DE交BC于E,且AD=14,DC=9,

考题 如图,在一张矩形纸片ABCD中,AB=4,BC=8。点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点日处,点D落在G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时, 。以上结论中,你认为正确的有( )个。 A.1 B.2 C.3 D.4

考题 理论示功图中,在一个冲次中悬点做的()为平行四边形ABCD的面积。A、负功B、净功C、功D、冲程