网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

在平行四边形ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F,⊙O在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止,试求⊙O滚过的路程.


参考答案

更多 “ 在平行四边形ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F,⊙O在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止,试求⊙O滚过的路程. ” 相关考题
考题 平行四边形中,已知AB、BC及其夹角∠ B(∠ B是锐角),能求出平行四边形ABCD的面积S吗?如果能,写出用AB,BC及其夹角∠ B表示S的式子。

考题 对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法②∠B大于90°左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:延长CD,过A作AN⊥BC于N;延长AB,过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法③∠B等于90°证明:∵∠B=∠D=90°;AB=CD;AC=AC∴△ABC=△ADC(HL)∴AB=CB∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。

考题 已知点A(-4,2),B(0,o),则线段AB的垂直平分线的斜率为 ( )A.AB.BC.CD.D

考题 如图,四边形ABCD中,AB=10,AD=m,∠D=60o,以AB为直径作⊙O。 (1)求圆心0到CD的距离(用含m的代数式表示); (2)当m取何值时,CD与⊙0相切?

考题 如图。在直角梯形ABCD中,AB∥CD,∠BAD=90o,且AB=8,AD=3,CD=4,动点P,Q分别以点B和点A为起点同时出发,点P沿B→A,以每秒1个单位速度运动,终点为点A;点Q沿A→D→C→B,以每秒1.5个单位速度运动,终点为点B。设△APQ的面积为y,运动时间为x。 (1)求y关于x的函数解析式y=f(x); (2)画出函数y=f(x)的图象。

考题 如图:已知圆0,点P在圆外,D,E在圆上,PE交圆于C,PD与圆相切,G为CE上一点且满足PG=PD,连接DG并延长交圆于A,作弦AB⊥EP,垂足为F。 (1)求证:AB为圆的直径; (2)若AC=BD,AB=5,求弦DE的长。

考题 如下图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.

考题 在平行四边形ABCD中,∠DAB=60,AB=15cm,已知圆O的半径等于3cm,AB,AD分别与圆O相切于点E,F.圆0在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止.试求圆O滚过的路程.

考题 如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2. (1)求证:AB=BC; (2)当BE⊥AD于E时,试证明:BE=AE+CD.

考题 如右图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙0上,且∠OBA=40°,则∠ADC=_______.

考题 如图⊙O和⊙O’相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E.证明: (1)AC?BD=AD?AB; (2)AC=AE.

考题 如图,AB是⊙O的直径,AC是弦,直线EF和⊙O相切与点C,AD⊥EF,垂足为D。 (1)若 ∠DAC=63°,求∠BAC;(5分) (2)若把直线EF向上平行移动,如图,直线EF交 ⊙O于G和C两点,若题中的其他条件不变,这时与∠DAC相等的角是哪一个 为什么 (5分)

考题 如图所示,梯形ABCD的两条对角线AD、BC相交于O,EF平行于两条边且过O点。现已知AB=6,CD=18。问EF的长度为多少? A. 8.5 B. 9 C. 9.5 D. 10

考题 如图,在梯形ABCD中,AB//CD,O为AC与BD的交点,CO=2AO,则梯形ABCD与三角形AOB的面积之比为: A.6:1 B.7:1 C.8:1 D.9:1

考题 平行四边形ABCD如右图所示,E为AB上的一点,F、G分别是AC和DE、DB的交点。若AB=3AE,则四边形BEFG与ABCD的面积之比是: A.2︰7 B.3︰13 C.4︰19 D.5︰24

考题 细直杆AB由另二细杆O1A与O2B铰接悬挂。O1ABO2并组成平等四边形。杆AB的运动形式为: A.平移(或称平动) B.绕点O1的定轴转动 C.绕点D的定轴转动(O1D)=DO2=BC=l/2,AB=l D.圆周运动

考题 如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8, AB∥DE,求△DEC的周长。

考题 椭圆的焦点分别是F1和F2,已知椭圆的离心率 .过中心O 作直线与椭圆交于A,B两点,O为原点,若△ABF2的面积是20。 (1)求m的值; (2)直线AB的方程。

考题 在A、B、O血型反定型中,A红细胞(-),B红细胞(+),O红细胞(-),此血型结果为:( )A.A B.B C.O D.AB

考题 如图,已知四棱锥P-ABCD底面ABCD为矩形,侧棱PA⊥ABCD,AB=AP=21/2AD=2,E,F分别为PC,AB的中点。 (I)证明:EF∥面PAD。 (II)求三棱锥B-PFC的体积。

考题 分别用分析法,综合法证明如下命题。 命题:如图。三角形ABC的角B和角C的角平分线相交于点O,过点O作平行于底边BC的直线,交AB边于点D,交AC边于点E,则DE=BD+EC。

考题 已知四棱锥P-ABCD底面为直角梯形,AB平行于DC,∠DAB=90°,PA垂直于底面ABCD,PA=AD=DC= AB=1,M为PB中点。 (1)求证:面PAD⊥面PCD; (2)求面AMC与面BMC所成二面角的余弦值。

考题 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90o,E是CD的中点。 (1)证明:CD⊥平面PAE; (2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

考题 不会产生O血型子女的夫妇是()。A、AB与AB夫妻B、AB与O夫妻C、AB与A夫妻D、AB与B夫妻

考题 某医院同日生下四个孩子,其血型分别是O、A、B和AB,这四孩子的双亲的血型是O与O;AB与O;A与B;B与B。请判断这四个孩子的父母的血型。

考题 在铰链四杆机构ABCD中,已知AB=25mm,BC=70mm,CD=65mm,AD=95mm,当AD为机架时,是()机构;当AB为机架时,是()机构。

考题 多选题不会产生O血型子女的夫妇是()。AAB与AB夫妻BAB与O夫妻CAB与A夫妻DAB与B夫妻