网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
N阶矩阵A经过若干次初等变换化为矩阵B,则().

A.|A|=|B|
B.|A|≠|B|
C.若|A|=0则|B|=0
D.若|A|>0则|B|>0

参考答案

参考解析
解析:
更多 “N阶矩阵A经过若干次初等变换化为矩阵B,则().A.|A|=|B| B.|A|≠|B| C.若|A|=0则|B|=0 D.若|A|>0则|B|>0” 相关考题
考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 A,B为n阶矩阵,cond(AB) A,B为n阶矩阵,cond(AB)

考题 设A,B均为n阶矩阵,(I一B)可逆,则矩阵方程A+BX=X的解X=()。

考题 初等矩阵( ) A.都可以经过初等变换化为单位矩阵 B.所对应的行列式的值都等于1 C.相乘仍为初等矩阵 D.相加仍为初等矩阵

考题 设A,B为n阶可逆矩阵,则().

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C: B. C.A总可以经过初等变换化为单位矩阵E: D.以上都不对.

考题 与n阶单位矩阵E相似的矩阵是 A. B.对角矩阵D(主对角元素不为1) C.单位矩阵E D.任意n阶矩阵A

考题 设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值 B.A是可逆矩阵 C.A存在n个线性无关的特征向量 D.A一定为n阶实对称矩阵

考题 设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>m B.r=m C.rD.r≥m

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C= A.E B.-E C.A D.-A

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C B. C.A总可以经过初等变换化为单位矩阵E D.以上都不对

考题 N阶矩阵A经过若干次初等变换化为矩阵B,则().A.|A|=|B| B.|A|≠|B| C.若|A|=0则|B|=0 D.若|A|>0则|B|>0

考题 设n阶矩阵A与B等价, 则必须

考题 设A为m X n矩阵,且r(A)=m小于n,则下列结论正确的是 AA的任意m阶子式都不等于零 BA的任意m个子向量线性无关 C方程组AX=b一定有无数个解 D矩阵A经过初等行变换化为

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设 A为 n 阶方阵,B是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。A.|A|=|B| B.|A|≠|B| C.若|A|=0,则一定有 |B|=0 D.若 |A|> 0,则一定有 |B|> 0

考题 均为n阶可逆矩阵,则=( )。 A. B.A+B C. D.

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。 A. -An B. An C. (-1)nAn D. (-1)n-1An

考题 设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有( ).《》( )

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*

考题 单选题设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有(  )。A |A|=|B|B |A|≠|B|C 若|A|=0,则一定有|B|=0D 若|A|>0,则一定有|B|>0

考题 单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。A A的任意m个列向量必线性无关B A的任一个m阶子式不等于0C 非齐次线性方程组AX(→)=b(→)一定有无穷多组解D A通过行初等变换可化为(Em,0)