网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( )




A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差
B.X1,X2,…,Xn,…同分布且有相同的数学期望
C.X1,X2,…,Xn,…为同分布的离散型随机变量
D.X1,X2,…,Xn,…为同分布的连续型随机变量

参考答案

参考解析
解析:根据辛钦大数定律的条件,应选(B).
更多 “设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( ) A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差 B.X1,X2,…,Xn,…同分布且有相同的数学期望 C.X1,X2,…,Xn,…为同分布的离散型随机变量 D.X1,X2,…,Xn,…为同分布的连续型随机变量 ” 相关考题
考题 设X1,X2,…,Xn是简单随机样本,则有( )。A.X1,X2,…,Xn相互独立B.X1,X2,…,Xn有相同分布C.X1,X2,…,Xn彼此相等D.X1与(X1+X2)/2同分布E.X1与X2的均值相等

考题 已知样本X1,X2,…,Xn,其中μ2未知。下列表达式中,不是统计量的是( )。A.X1+X2B.max{X1,X2,…,Xn}C.X1+X2-2μD.(X1-μ)σE.μ+X1

考题 说明n皇后问题的解(x1,x2,….,xn)的含义。

考题 设X1,X2,…,Xn是来自总体的样本,且EX=μ,DX=б2则()是μ的无偏估计。

考题 设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn( )。A.有相同的数学期望B.有相同的方差C.服从同一指数分布D.服从同一离散型分布

考题 设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,则有( )。

考题 设X1,X2,…,Xn是一个样本,样本的观测值分别为x1,x2,…,xn,则样本方差s2的计算公式正确的有( )。

考题 设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( ) A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差 B.X1,X2,…,Xn,…同分布且有相同的数学期望 C.X1,X2,…,Xn,…为同分布的离散型随机变量 D.X1,X2,…,Xn,…为同分布的连续型随机变量

考题 设随机变量X1,X2,…,Xn相互独立,Sn=X1,X2,…,Xn则根据列维林德伯格(Levy-Lindberg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要1,X2,…,XnA.有相同的数学期望. B.有相同的方差. C.服从同一指数分布. D.服从同一离散分布.

考题 设(X1,X2,…,Xn)(N≥2)为标准正态总体X的简单随机样本,则().

考题 设X1,X2,…,Xn,…为独立同分布的随机变量列,且均服从参数为λ(λ>1)的指数分布,记φ(x)为标准正态分布函数,则

考题 设总体X服从参数λ的指数分布,X1,X2,…,Xn是从中抽取的样本,则E(X)为( )。

考题 设总体X的概率密度为 未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:

考题 已知样本x1,x2,…,xn,其中μ未知。下列表达式中,不是统计量的是()。 A. X1 +X2 B. max(x1,x2,…,xn) C. X1 +X2 -2μ D. (X1 -μ)/σ E. X1 +μ

考题 设X1,X2,…Xn是简单随机样本,则有( )。 A. X1,X2,…Xn相互独立 B. X1,X2,…Xn有相同分布 C. X1,X2,…Xn彼此相等 D.X1与(X1,+X2)/2同分布 E.X1与Xn的均值相等

考题 设随机变量X1,X2,…,Xn相互独立且在[0,na]上服从均匀分布,令U=max{X1,X2,…,Xn},求U的数学期望与方差.

考题 设某元件的使用寿命X的概率密度为f(x;θ)=,其中θ>0为未知参数,又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.

考题 设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2= ,则E(S^2)=_______.

考题 若随机变量x1,x2,…,xn相互独立同分布于N{μ,2^2},则根据切比雪夫不等式得P{|x-μ|≥2)≤_______.

考题 设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.

考题 设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:

考题 设X1,X2...,Xn是来自总体的简单随机样本,则X1,X2,...,Xn必然满足()A、独立但分布不同B、分布相同但不相互独立C、独立同分布D、不能确定

考题 设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()

考题 设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未知参数,则函数T(X1,X2,…,Xn)是一个()

考题 问答题设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.

考题 多选题设X1,X2,…,Xn是简单随机样本,则有(  )。AX1,X2,…,Xn相互独立 BX1,X2,…,Xn有相同分布CX1,X2,…,Xn彼此相等, DX1与(X1+X2)/2同分布EX1与Xn的均值相等

考题 问答题设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

考题 问答题设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。