网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
已知如图,直角三角形ABC的两直角边AC = 8厘米,BC=6厘米,以AC、BC为边向三角形外分别作正方形ACDE和BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点了,则阴影部分的总面积等于( )。

A. 46平方厘米 B. 38平方厘米
C. 40平方厘米 D. 48平方厘米


参考答案

参考解析
解析:已知ΔABC为直角三角形,AC=8厘米,BC=6厘米,则。 设四边形ACPN的面积为S1,ΔBCT的面积为S2,四边形CTMP的面积为S3。SACDE + SBGFC = 82 + 62 =102 =SABMN,即S1 + S2 + S阴影=S1 + S2+ S3 + SΔABC ,故S阴影=S3 + SΔABC 。已知四边形ABMN为正方形,则∠BAC + ∠ABC = ∠ABC + ∠CBM,得∠BAC =∠CBM;∠CBM +∠BPM = ∠CBM +∠BTC,则∠BPM =∠BTC。因为AB=BM,所以SΔABT≌SΔBMP(角角边),故S3+SΔBCT=SΔABC +SΔBCT,得S3=SΔABC。故S阴影=2 SΔABC = 2X8X6/2 = 48(平方厘米)。
更多 “已知如图,直角三角形ABC的两直角边AC = 8厘米,BC=6厘米,以AC、BC为边向三角形外分别作正方形ACDE和BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点了,则阴影部分的总面积等于( )。 A. 46平方厘米 B. 38平方厘米 C. 40平方厘米 D. 48平方厘米” 相关考题
考题 请教:2009年黑龙江省哈尔滨市中考《数学》试卷第2大题第9小题如何解答? 【题目描述】 18.若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为______________.

考题 △ABC中,AB=3,BC=4,则AC边的长满足( )。A.AC=5B.AC1C.AC7D.1AC7

考题 若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为______________ .

考题 对边相等,对角相等的凸四边形,是平行四边形吧? 方法①∠B小于90°;左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:过A作AN⊥BC于N;过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法②∠B大于90°左上为A,左下为B,右下为C,右上为D;已知∠B=∠D;AB=CD;证明:延长CD,过A作AN⊥BC于N;延长AB,过C作CM⊥AD于M;连接AC∵AN⊥BC;CM⊥AD∴∠ANB=∠DMC=90°又∵∠B=∠D;AB=CD∴△ANB=△DMC(AAS)∴AN=CM;BN=DM又∵∠ANB=∠DMC=90°,AC=AC∴△ACD=△AMD(HL)∴AM=DN又∵BN=DM∴BD=AC∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。方法③∠B等于90°证明:∵∠B=∠D=90°;AB=CD;AC=AC∴△ABC=△ADC(HL)∴AB=CB∵BD=AC;AB=CD∴凸四边形ABCD为平行四边型。有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。

考题 在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是( )。A.2.5B.5C.10D.15

考题 如图,在以为直径的半圆上取一点C,分别以AC和BC为直径在△ABC外作半圆AEC和BFC。当C点在什么位置时,图中两个弯月形(阴影部分)AEC和BFC的面积和最大?() A. AC 大于 BC B. AC 小于 BC C. AC 等于 BC D.无法得出

考题 如图1—15所示,两根轻质细杆AC、BC用铰链固定在墙上构成一个直角三角形支架,在C处挂一盏吊灯。已知AC=1.2 m,BC=2 m,吊灯重200 N。求杆AC和BC所受力的大小和方向。

考题 如图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在AABC外作半圆A£C和BFC。当C点在什么位置时,图中两个弯月形(阴影部分)AEC和BFC的面积和最大?( ) A. AC大于BC B. AC小于BC C. AC等于BC D.无法得出

考题 锐角三角形ABC中,sinA=√5/5,D为BC边上的点,若△ABD 和△ACD的面积分别为2和4,过D作DE ⊥AB于E,DF⊥AC于F,

考题 在边长为1的正方形ABCD中,AC与BD相交于O,以A、B、C、D分别为圆心,以对角线长的一半为半径画圆弧与正方形的边相交,如图,则图中阴影部分的面积为多少?(π=3.14) A.0.43 B.0.57 C.0.64 D.0.71

考题 如图,由四个全等的直角三角形拼成一个大正方形,每个三角形的面积都是1,且两直角边之比大于等于2,则这个大正方形的面积至少是()。 A.4 B.5 C.6 D.7

考题 如图所示,ΔABC是直角三角形,四边形和四边形都是正方形,已知4cm,问正方形HFGF的面积是多少?( )

考题 如,在直角三角形ABC中,AC=4,BC=3,DE//BC,已知梯形BCDE的面积为3,则DE长为( )

考题 如图,一个三棱镜的截面为等腰直角△ABC,∠A为直角,此截面所在平面内的光线沿平行于BC边的方向射到AB边,进入棱镜后直接射到AC边上,并刚好能发生全反射。该棱镜材料的折射率为(  )。

考题 如图所示,有一束平行于等边三棱镜截面ABC的单色光从空气射向E点,并偏折到F点。已知入射方向与边AB的夹角为θ=30。,E、F分别为边AB、BC的中点,则(  )。

考题 如图所示,ΔABC是直角三角形,四边形和四边形HFGE都是正方形,已知AI=1cm,IB=4cm,问正方形HFGE的面积是多少?( )

考题 如图9所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为__________。

考题 如图1,在△ABC中,BC = 8 cm,AB的垂直平分线交AB于点D, 交边AC于点E,△BCE的周长等于18 cm,则AC的长等于( )A、6cm  B、8cm C、10cm   D、12cm

考题 分别用分析法,综合法证明如下命题。 命题:如图:三角形ABC的角B和角C的角平分线相交于点0,过点O作平行于底边BC的直线,交AB边于点D,交AC边于点E,则DE=BD+EC。

考题 若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上的一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为5/2或12/5。

考题 已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1和S2,则S1+S2的值等于4π。

考题 分别以直角三角形的三边为边向外作三个相似的多边形,则两直角边上的多边形的面积之和等于斜边上的多边形的面积。

考题 分别在直角三角形三边向外作正五边形,则两直角边上的正五边形的面积之和等于斜边上的正五边形的面积。

考题 判断题若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上的一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为5/2或12/5。A 对B 错

考题 判断题分别以直角三角形的三边为边向外作三个相似的多边形,则两直角边上的多边形的面积之和等于斜边上的多边形的面积。A 对B 错

考题 判断题已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1和S2,则S1+S2的值等于4π。A 对B 错

考题 判断题分别在直角三角形三边向外作正五边形,则两直角边上的正五边形的面积之和等于斜边上的正五边形的面积。A 对B 错