网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

设某种电灯泡的寿命X服从正态分布N(μ,σ2),其中是未知的,现在随机的抽取4只这种灯泡,测得其寿命为1500,1455,1368,1649,是估计总体均值为()

  • A、1500
  • B、1649
  • C、1493
  • D、1368

参考答案

更多 “设某种电灯泡的寿命X服从正态分布N(μ,σ2),其中是未知的,现在随机的抽取4只这种灯泡,测得其寿命为1500,1455,1368,1649,是估计总体均值为()A、1500B、1649C、1493D、1368” 相关考题
考题 关于中心极限定理,下列说法正确的是( )。A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布B.几个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值X近似服从正态分布N(μ,σ2/n)C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值X的分布总近似于正态分布D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ,σ2),则样本均值X仍为正态分布,其均值不变仍为μ,方差为σ2/n

考题 假设某总体服从正态分布N(12,4),现从中随机抽取一容量为5的样本X1,X2,X3,X4,X5,则:样本均值与总体均值之差的绝对值大于1的概率是( )。A.0.2628B.0.98C.0.9877D.0.9977

考题 (130~131题共用备选答案)从正态分布总体X~N(μ,σ)中随机抽取含量为n的样本,样本均数为,服从标准正态分布的随机变量是

考题 设X~N(μ,0.09)从中随机抽取样本量为4的样本,其样本均值为,则总体均值μ的 0.95的置信区间为( )。

考题 关于中心极限定理,下列说法正确的是( )。 A.多个随机变量的平均值(仍然是一个随机变量)服从或近似服从正态分布 B. n个相互独立同分布随机变量,其共同分布不为正态分布或未知,但其均值μ和方差σ2都存在,则在n相当大的情况下,样本均值 近似服从正态分布N(μ, σ2/n) C.无论什么分布(离散分布或连续分布,正态分布或非正态分布),其样本均值的分布总近似于正态分布 D.设n个分布一样的随机变量,假如其共同分布为正态分布N(μ, σ2)则样本均值仍为正态分布,其均值不变仍为μ,方差为 σ2/n

考题 假设某总体服从正态分布N(12, 4),现从中随机抽取一容量为5的样本X1,X2, X3, X4, X5,则: 样本均值与总体均值之差的绝对值大于1的概率是()。 A. 0.2628 B. 0. 98 C. 0.9877 D. 0.9977

考题 设X~N(μ,σ^2),其中σ^2已知,μ为未知参数,从总体X中抽取容量为16的简单随机样本,且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ^2=_______.

考题 设总体X的概率密度为f(x)=,其中θ>-1是未知参数,X1,   X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.

考题 设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.

考题 设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).

考题 设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ).A. B. C.X1+Xn D.

考题 设总体服从正态分布,总体方差未知,现抽取一容量为15的样本,拟对总体均值进行假设检验,检验统计量是( )。

考题 已知总体服从正态分布,且总体标准差σ,从总体中抽取样本容量为n的产品,测得其样本均值为x,在置信水平为1-a=95%下,总体均值的置信区间为(  )

考题 当总体为未知的非正态分布时,只要样本容量n足够大(通常要求n≥30), 样本均值X仍会接近正态分布,其分布的期望值为总体均值,方差为总体方差的1/n。()

考题 某灯泡厂家称平均使用寿命在1100小时以上随机抽取25只,测得其平均寿命为991小时,标准差为39.02小时。服从正态分布,取显著性水平为0.01,厂家的说法是否成立。

考题 从均值为200、标准差为50的总体中,抽取n=100的简单随机样本,用样本均值x估计总体均值,标准差是()

考题 关于中心极限定理的描述正确的是:()。A、对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B、正态样本均值服从分布N(μ,σ2/n)C、设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D、无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布

考题 某灯泡公司生产的灯泡寿命服从均值为2000小时、标准差为30的威布尔分布,随机抽取100个样品组成一个样本做灯泡寿命试验,那样本寿命均值的分布应服从:()A、均值为2000,标准差为3的威布尔分布B、均值为2000,标准差为30的威布尔分布C、均值为2000,标准差为3的正态分布D、均值为2000,标准差为30的正态分布

考题 设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,X是取自总体X的样本,则A的最大似然估计是().A、XB、S2C、SD、2

考题 从均值为200、标准差为50的总体中,抽取n=100的简单随机样本,用样本均值x估计总体均值,x的数学期望是()

考题 单选题某灯泡公司生产的灯泡寿命服从均值为2000小时、标准差为30的威布尔分布,随机抽取100个样品组成一个样本做灯泡寿命试验,那样本寿命均值的分布应服从:()A 均值为2000,标准差为3的威布尔分布B 均值为2000,标准差为30的威布尔分布C 均值为2000,标准差为3的正态分布D 均值为2000,标准差为30的正态分布

考题 多选题关于中心极限定理的描述正确的是:()。A对于n个相互独立同分布的随机变量共同服从正态分布,则样本均值又仍为正态分布B正态样本均值服从分布N(μ,σ2/n)C设X1,X2,„,Xn为n个相互独立共同分布随机变量,其共同分布不为正态分布或未知,但其均值和方差都存在,则在n相当大时,样本均值近似服从正态分布D无论共同分布是什么,只要变量个数n相当大时,均值的分布总近似于正态分布

考题 填空题从均值为200、标准差为50的总体中,抽取n=100的简单随机样本,用样本均值x估计总体均值,x的数学期望是()

考题 单选题设某种电灯泡的寿命X服从正态分布N(μ,σ2),其中是未知的,现在随机的抽取4只这种灯泡,测得其寿命为1500,1455,1368,1649,是估计总体均值为()A 1500B 1649C 1493D 1368

考题 单选题设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,X是取自总体X的样本,则A的最大似然估计是().A XB S2C SD 2

考题 问答题从某种型号的晶体管中抽取10件做样本测量其寿命,测得寿命的标准差为s=45(小时),设这批晶体管的寿命服从于正态分布N(μ,σ2),其中μ,σ2均为未知,求σ2的置信度为0.975的单侧置信上限。

考题 填空题从均值为200、标准差为50的总体中,抽取n=100的简单随机样本,用样本均值x估计总体均值,标准差是()