网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设函数在(a,b)内连续,则在(a,b)内()。
A
f(x)必有界
B
f(x)必可导
C
f(x)必存在原函数
D
D.必存在一点ξ∈(a,,使f(ξ)=0
参考答案
参考解析
解析:
暂无解析
更多 “单选题设函数在(a,b)内连续,则在(a,b)内()。A f(x)必有界B f(x)必可导C f(x)必存在原函数D D.必存在一点ξ∈(a,,使f(ξ)=0” 相关考题
考题
若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A.在(a,B)内连续B.在(a,B)内可导;C.在(a,B)内连续,在(a,B)内可导;D.在[a,B]内连续,在(a,B)内可导。
考题
若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0( )。
A.必存在且只有一个
B.至少存在一个
C.不一定存在
D.不存在
考题
设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
A. f'>0, f''>0 B.f'<0, f''<0
C. f'<0, f''>0 D. f'>0, f''<0
考题
设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
则在(- ∞ ,0)内必有:
(A) f ' > 0, f '' > 0 (B) f ' 0
(C) f ' > 0, f ''
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
下列命题中,正确的是( ).A.单调函数的导函数必定为单调函数
B.设f(x)为单调函数,则f(x)也为单调函数
C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
D.设f(x)在(a,b)内可导且只有一个极值点xo,f(xo)=0
考题
罗尔定理:设函数(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)(a)=(b),则在(a,b)内至少存在一点ξ,使得,′(ξ)=0。证明这个定理并说明其几何意义。
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
A. f'(x)>0,f''(x)>0 B. f(x) 0
C. f'(x)>0,f''(x)
考题
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0
考题
单选题设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A
f'(x)0,f"(x)0B
f'(x)0,f"(x)0C
f'(x)O,f"(x)0D
f'(x)0,f"(x)0
考题
单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
考题
单选题设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是( )。A
奇函数B
偶函数C
周期函数D
单调函数
考题
单选题函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)( )。A
没有零点B
至少有一个零点C
只有一个零点D
有无零点不能确定
热门标签
最新试卷