网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
判断题
若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。
A
对
B
错
参考答案
参考解析
解析:
暂无解析
更多 “判断题若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。A 对B 错” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是(A)若f(x) 是偶函数,则f(-x)是偶函数(B)若f(x)不是奇函数,则f(-x)不是奇函数(C)若f(-x)是奇函数,则f(x)是奇函数(D)若f(-x)不是奇函数,则f(x)不是奇函数
考题
下列命题正确的是().
A若|f(x)|在x=a处连续,则f(x)在x=a处连续
B若f(x)在x=a处连续,则|f(x)|在x=a处连续
C若f(x)在x=a处连续,则f(x)在z-a的一个邻域内连续
D若[f(a+h)-f(a-h)]=0,则f(x)在x=a处连续
考题
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是( )。
A. [f(x)/g(x)]>[f(a)/g(b)]
B. [f(x)/g(x)]>[f(b)/g(b)]
C. f(x)g(x)>f(a)g(a)
D. f(x)g(x)>f(b)g(b)
考题
若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0
B.f′(x)<0,f″(x)>0
C.f′(x)>0,f″(x)<0
D.f′(x)>0,f″(x)>0
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.
考题
下列命题中正确的为()A.若xo为f(x)的极值点,则必有,f'(xo)=0
B.若f'(xo)=0,则点xo必为f(x)的极值点
C.若f'(xo)≠0,则点xo必定不为f(x)的极值点
D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0
考题
若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )A.f′(x)<f″(x)<0
B.f′(x)<f″(x)>0
C.f′(x)>f″(x)<0
D.f′(x)>f″(x)>0
考题
命题“若f(x)为奇函数,则f(-x)为奇函数”的否命题( )。A.若f(x)为偶函数,则f(-x)为偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)为奇函数,则fD.若f(-x)为奇函数,则f(x)不是奇函数
考题
若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对
考题
单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内( )。A
没有实根B
有两个实根C
有无穷多个实根D
有且仅有一个实根
考题
单选题若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )。A
f′(x)<0,f″(x)<0B
f′(x)<0,f″(x)>0C
f′(x)>0,f″(x)<0D
f′(x)>0,f″(x)>0
考题
单选题下列说法中正确的是( )。[2014年真题]A
若f′(x0)=0,则f(x0)必须是f(x)的极值B
若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D
若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件
考题
单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是( )。[2013年真题]A
f′(x)>0,f″(x)<0B
f′(x)<0,f″(x)>0C
f′(x)>0,f″(x)>0D
f′(x)<0,f″(x)<0
考题
单选题(2013)若f(-x)=-f(x)(-∞0,f″(x)0,则f(x)在(0,+∞)内是:()A
f′(x)0,f″(x)0B
f′(x)0,f″(x)0C
f′(x)0,f″(x)0D
f′(x)0,f″(x)0
热门标签
最新试卷