网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
单选题
若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。
A

没有实根

B

有两个实根

C

有无穷多个实根

D

有且仅有一个实根


参考答案

参考解析
解析:
由f″(x)<0(x>a)知f′(x)单调减少,又f′(a)<0,则f′(x)在区间(a,+∞)上恒小于0,即f(x)在区间(a,+∞)上单调减少,又由f(a)=A>0,且f(x)在区间[a,+∞)上二阶可导,故方程f(x)=0在(a,+∞)内有且仅有一个实根。
更多 “单选题若f(x)在区间[a,+∞)上二阶可导,且f(a)=A>0,f′(a)<0,f″(x)<0(x>a),则方程f(x)=0在(a,+∞)内(  )。A 没有实根B 有两个实根C 有无穷多个实根D 有且仅有一个实根” 相关考题
考题 函数f(x)二阶可导,且f’(x0)=0,则点(x0,f(x0))为曲线y=f(x)的拐点。() 此题为判断题(对,错)。

考题 设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值? A.x=x0是f(x)的唯一驻点 B.x=x0是f(x)的极大值点 C.f"(x)在(-∞,+∞)恒为负值 D.f"(x0)≠0

考题 设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0 B.f(a)=0且f′(a)≠0 C.f(a)>0且f′(a)> D.f(a)<0且f′(a)<

考题 若f(-x)=f(x),且在(0,+∞)内f′(x)>0,f″(x)<0,则f(x)在(-∞,0)内( )。A.f′(x)<0,f″(x)<0 B.f′(x)<0,f″(x)>0 C.f′(x)>0,f″(x)<0 D.f′(x)>0,f″(x)>0

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0 C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0

考题 设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

考题 设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:

考题 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x) B.当f'(x)≥0时,f(x)≤g(x) C.当f"(x)≥0时,f(x)≥g(x) D.当f"(x)≥0时,f(x)≤g(x)

考题 (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

考题 设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

考题 设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?A、f″(x)+f′(x)=0B、f″(x)-f′(x)=0C、f″(x)+f(x)=0D、f″(x)-f(x)=0

考题 设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

考题 设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A、x=x0是f(x)的唯一驻点B、x=x0是f(x)的极大值点C、f″(x)在(-∞,+∞)恒为负值D、f″(x0)≠0

考题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0

考题 下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

考题 单选题(2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)0,f″(x)0则在(-∞,0)内必有:()A f′(x)0,f″(x)0B f′(x)0,f″(x)0C f′(x)0,f″(x)0D f′(x)0,f″(x)0

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f″(x)+f(x)=0B f′(x)+f(x)=0C f″(x)+f′(x)=0D f″(x)+f′(x)+f(x)=0

考题 单选题设f(x)在(-∞,+∞)二阶可导,f(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?()A x=x0是f(x)的唯一驻点B x=x0是f(x)的极大值点C f″(x)在(-∞,+∞)恒为负值D f″(x)≠0

考题 问答题设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

考题 单选题下列说法中正确的是(  )。[2014年真题]A 若f′(x0)=0,则f(x0)必须是f(x)的极值B 若f(x0)是f(x)的极值,则f(x)在点x0处可导,且f′(x0)=0C 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的必要条件D 若f(x0)在点x0处可导,则f′(x0)=0是f(x)在x0取得极值的充分条件

考题 单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。A 曲线是向上凹的B 曲线是向上凸的C 单调减少D 单调增加

考题 单选题若f(-x)=-f(x)(-∞<x<+∞),且在(-∞,0)内f′(x)>0,f″(x)<0,则f(x)在(0,+∞)内是(  )。[2013年真题]A f′(x)>0,f″(x)<0B f′(x)<0,f″(x)>0C f′(x)>0,f″(x)>0D f′(x)<0,f″(x)<0

考题 问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

考题 单选题设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A x=x0是f(x)的唯一驻点B x=x0是f(x)的极大值点C f″(x)在(-∞,+∞)恒为负值D f″(x0)≠0

考题 单选题设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?A f″(x)+f′(x)=0B f″(x)-f′(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0

考题 单选题(2013)若f(-x)=-f(x)(-∞0,f″(x)0,则f(x)在(0,+∞)内是:()A f′(x)0,f″(x)0B f′(x)0,f″(x)0C f′(x)0,f″(x)0D f′(x)0,f″(x)0

考题 单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。A f′(x)+f(x)=0B f′(x)-f(x)=0C f″(x)+f(x)=0D f″(x)-f(x)=0