网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)

在数域F上次数≥1的多项式f(x)因式分解具有唯一性。


参考答案

更多 “在数域F上次数≥1的多项式f(x)因式分解具有唯一性。” 相关考题
考题 若一整系数多项式f(x)有有理根,则f(x)在有理数域上可约。(  )

考题 二元多项式f(x1,x2),如果将x1,x2对换后,有f(x1,x2=f(x2,x1)则称f(x1,x2)为二元对称多项式。下列是二元对称多项式的是( )。 A. B. C. D.

考题 互素多项式的性质,(f(x),h(x))=1,(g(x),h(x))=1,则有(f(x)g(x),h(x))=1成立。

考题 一个次数大于0的整系数多项式f(x)在Q上可约,那么f(x)可以分解成两个次数比f(x)次数低的什么多项式的乘积。()A、整系数多项式B、本原多项式C、复数多项式D、无理数多项式

考题 对于任意f(x)∈F[x],f(x)都可以整除哪个多项式?()A、f(x+c)c为任意常数B、0.0C、任意g(x)∈F{x]D、不存在这个多项式

考题 不可约多项式f(x)的因式有哪些?()A、只有零次多项式B、只有零次多项式和f(x)的相伴元C、只有f(x)的相伴元D、根据f(x)的具体情况而定

考题 互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()A、g(x)B、h(x)C、f(x)g(x)D、f(x)

考题 零次多项式在数域F上没有根。

考题 Kpol={数域k上的一元多项式函数},对于f,g∈Kpol,(f+g)(t)等于什么?()A、f(t)+g(t)B、f(t)g(t)C、f(g(t))D、g(f(t))

考题 f(x)在F[x]中可约的,且次数大于0,那么f(x)可以分解为几种不可约多项式的乘积?()A、无限多种B、2种C、唯一一种D、无法确定

考题 在数域F上x^2-3x+2可以分解成()。A、(x-1)^2B、(x-1)(x-3)C、(x-2)(x-3)D、(x-1)(x-2)

考题 若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A、只能有(p(x),f(x))=1B、只能有(p(x)C、(p(x),f(x))=1或者(p(x)D、(p(x),f(x))=1或者(p(x)

考题 f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A、任意多项式B、非本原多项式C、本原多项式D、无理数多项式

考题 设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))

考题 (x-1)^2(x-2)^2在数域F中有几个根?()A、1.0B、2.0C、3.0D、4.0

考题 域F上的一元多项式中的x是一个属于F的符号。

考题 在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。

考题 在F(x)中,f(x),g(x)是次数≢n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。

考题 判断题零次多项式在数域F上没有根。A 对B 错

考题 单选题若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A 只能有(p(x),f(x))=1B 只能有(p(x)C (p(x),f(x))=1或者(p(x)D (p(x),f(x))=1或者(p(x)

考题 判断题在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。A 对B 错

考题 判断题在数域F上次数≥1的多项式f(x)因式分解具有唯一性。A 对B 错

考题 单选题f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A 任意多项式B 非本原多项式C 本原多项式D 无理数多项式

考题 单选题设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A f(x)=g(f(x))B g(x)=f(f(x))C f(x)=g(x)D g(x)=f(g(x))

考题 判断题域F上的一元多项式中的x是一个属于F的符号。A 对B 错

考题 判断题在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。A 对B 错

考题 单选题在数域F上x^2-3x+2可以分解成()。A (x-1)^2B (x-1)(x-3)C (x-2)(x-3)D (x-1)(x-2)