网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
f(x)(系数为an…a0)是一个次数n>0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()
A
任意多项式
B
非本原多项式
C
本原多项式
D
无理数多项式
参考答案
参考解析
解析:
暂无解析
更多 “单选题f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A 任意多项式B 非本原多项式C 本原多项式D 无理数多项式” 相关考题
考题
设有关键字序列F={Q,G,M,Z,A,N,P,X,H},下面()序列是从上述序列出发建堆的结果。A.A,G,H,M,N,P,Q,X,Z
B.A,G,M,H,Q,N,P,X,Z
C.G,M,Q,A,N,P,X,H,Z
D.H,0,M,P,A,N,Q.X.Z
考题
两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足什么条件时使得p|Cs(s=0,1…)成立?()A、p是奇数B、p是偶数C、p是合数D、p是素数
考题
若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A、只能有(p(x),f(x))=1B、只能有(p(x)C、(p(x),f(x))=1或者(p(x)D、(p(x),f(x))=1或者(p(x)
考题
f(x)(系数为an…a0)是一个次数n0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式?()A、任意多项式B、非本原多项式C、本原多项式D、无理数多项式
考题
设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A、f(x)=g(f(x))B、g(x)=f(f(x))C、f(x)=g(x)D、g(x)=f(g(x))
考题
若f(x)的常数项a0=±1,令g(x)=f(x+b),b=1或-1,如果g(x)在Q上不可约那么可以的什么结论?()A、g(f(x))在Q不可约B、f(x)在Q不可约C、f(g(x))在Q不可约D、f(g(x+b))在Q不可约
考题
单选题若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?()A
只能有(p(x),f(x))=1B
只能有(p(x)C
(p(x),f(x))=1或者(p(x)D
(p(x),f(x))=1或者(p(x)
考题
单选题一个次数大于0的整系数多项式f(x)在Q上可约,那么f(x)可以分解成两个次数比f(x)次数低的什么多项式的乘积。()A
整系数多项式B
本原多项式C
复数多项式D
无理数多项式
考题
单选题两个本原多项式g(x)和f(x),令h(x)=g(x)f(x)记作Cs,若h(x)不是本原多项式,则存在p当满足什么条件时使得p|Cs(s=0,1…)成立?()A
p是奇数B
p是偶数C
p是合数D
p是素数
考题
单选题若f(x)的常数项a0=±1,令g(x)=f(x+b),b=1或-1,如果g(x)在Q上不可约那么可以的什么结论?()A
g(f(x))在Q不可约B
f(x)在Q不可约C
f(g(x))在Q不可约D
f(g(x+b))在Q不可约
考题
单选题设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()A
f(x)=g(f(x))B
g(x)=f(f(x))C
f(x)=g(x)D
g(x)=f(g(x))
考题
单选题互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()A
g(x)B
h(x)C
f(x)g(x)D
f(x)
热门标签
最新试卷