网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。
- A、无解
- B、只有零解
- C、有非零解
- D、不一定
参考答案
更多 “设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A、无解B、只有零解C、有非零解D、不一定” 相关考题
考题
设A为m*n矩阵,则有()。
A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
考题
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()
A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
考题
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解
考题
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.
考题
设A是m×N阶矩阵,B是n×m阶矩阵,则().
A.当m>n时,线性齐次方程组ABX=0有非零解
B.当m>n时,线性齐次方程组ABX=0只有零解
C.当n>m时,线性齐次方程组ABX=0有非零解
D.当n>m时,线性齐次方程组ABX=0只有零解
考题
设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解
B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解
C.若方程组AX=b无解,则方程组AX=0一定有非零解
D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解
考题
设A是m×n矩阵,AX=0是AX=b的导出组,则下列结论正确的是( ).《》( )A.若AX=0仅有零解,则AX=b有唯一解
B.若AX=0有非零解,则AX=b有无穷多解
C.若AX=b有无穷多解,则AX=0仅有零解
D.若AX=b有无穷多解,则AX=0有非零解
考题
单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则( )。A
A*X(→)=0(→)的解均是AX(→)=0(→)的解B
AX(→)=0(→)的解均是A*X(→)=0(→)的解C
AX(→)=0(→)与A*X(→)=0(→)无非零公共解D
AX(→)=0(→)与A*X(→)=0(→)仅有2个非零公共解
考题
单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则( ).A
A*X=0的解均是AX=0的解B
AX=0的解均是A*X=O的解C
AX=0与A*X=0无非零公共解D
AX=0与A*X=O仅有2个非零公共解
考题
单选题若非齐次线性方程组Ax=b中,方程的个数少于未知量的个数,则下列结论中正确的是( )。[2013年真题]A
Ax=0仅有零解B
Ax=0必有非零解C
Ax=0一定无解D
Ax=b必有无穷多解
考题
单选题(2013)若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:()A
AX=0仅有零解B
AX=0必有非零解C
AX=0一定无解D
AX=b必有无穷多解
考题
单选题设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A
无解B
只有零解C
有非零解D
不一定
热门标签
最新试卷