网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.

参考答案

参考解析
解析:
更多 “设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.” 相关考题
考题 设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 矩阵A是m×n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性无关。() 此题为判断题(对,错)。

考题 设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

考题 设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

考题 设A为矩阵,都是线性方程组Ax=0的解,则矩阵A为:

考题 设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系 B.k1ξ1+k1ξ2是Ax=0的通解 C.k1ξ1+ξ2是Ax=0的通解 D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是A.① ② B.① ③ C.② ④ D.③ ④

考题 若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

考题 设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解 A.① ② B.① ③ C.② ④ D.③ ④

考题 设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解 B.若Ax=0有非零解,则Ax=b有无穷多个解 C.若Ax=b有无穷多个解,则Ax=0仅有零解 D.若Ax=b有无穷多个解,则Ax=0有非零解

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:   ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);   ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;   ③若Ax=0与Bx=0同解,则秩(A)=秩(B);   ④若秩(A)=秩(B)则Ax=0与Bx=0同解;   以上命题中正确的是A.①②. B.①③. C.②④. D.③④,

考题 设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=n B.r<n C.r≥n D.r>n

考题 设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

考题 设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

考题 设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

考题 设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④

考题 设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A、无解B、只有零解C、有非零解D、不一定

考题 单选题设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A 无解B 只有零解C 有非零解D 不一定

考题 填空题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

考题 单选题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。A =0B ≠0C =1D ≠1

考题 单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX=O有两个线性无关的解,则(  ).A A*X=0的解均是AX=0的解B AX=0的解均是A*X=O的解C AX=0与A*X=0无非零公共解D AX=0与A*X=O仅有2个非零公共解

考题 单选题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。A <0B ≠0C >0D =0

考题 单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A ①②B ①③C ②④D ③④

考题 单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则(  )。A A*X(→)=0(→)的解均是AX(→)=0(→)的解B AX(→)=0(→)的解均是A*X(→)=0(→)的解C AX(→)=0(→)与A*X(→)=0(→)无非零公共解D AX(→)=0(→)与A*X(→)=0(→)仅有2个非零公共解