网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
单选题
设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。
A
若AX=0仅有零解,则AX=b有唯一解
B
若AX=0有非零解,则AX=b有无穷多解
C
若AX=b有无穷多解,则AX=0仅有零解
D
若AX=b有无穷多解,则AX=0有非零解
参考答案
参考解析
解析:
由方程组AX=0有解,不能判定AX=b是否有解;由AX=b有唯一解,知AX=0只有零解;由AX=b由无穷多解,知AX=0有非零解。
由方程组AX=0有解,不能判定AX=b是否有解;由AX=b有唯一解,知AX=0只有零解;由AX=b由无穷多解,知AX=0有非零解。
更多 “单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。A 若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B 若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C 若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D 若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解” 相关考题
考题
设A为m*n矩阵,则有()。
A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
考题
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()
A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
考题
设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
B.k1ξ1+k1ξ2是Ax=0的通解
C.k1ξ1+ξ2是Ax=0的通解
D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系
考题
设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:
(1)若AX=O的解都是BX=O的解,则r(A)≥r(B)
(2)若r(A)≥r(B),则AX=0的解都是BX=0的解
(3)若AX=0与BX=0同解,则r(A)-r(B)
(4)若r(A)=r(B),则AX=0与BX=0同解
以上命题正确的是().A.(1)(2)
B.(1)(3)
C.(2)(4)
D.(3)(4)
考题
设A是m×n阶矩阵,则下列命题正确的是().A.若mB.若m>n,则方程组AX=b一定有唯一解
C.若r(A)=n,则方程组AX=b一定有唯一解
D.若r(A)=m,则方程组AX=b一定有解
考题
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解
考题
设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解
B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解
C.若方程组AX=b无解,则方程组AX=0一定有非零解
D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解
考题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B)则Ax=0与Bx=0同解;
以上命题中正确的是A.①②.
B.①③.
C.②④.
D.③④,
考题
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④
考题
单选题设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是( )。A
若AX(→)=0(→)仅有零解,则AX(→)=b(→)有唯一解B
若AX(→)=0(→)有非零解,则AX(→)=b(→)有无穷多解C
若AX(→)=b(→)有无穷多解,则AX(→)=0(→)仅有零解D
若AX(→)=b(→)有无穷多解,则AX(→)=0(→)有非零解
考题
单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A
①②B
①③C
②④D
③④
考题
问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。
热门标签
最新试卷