网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则的解空间的维数相同以上命题中正确的是( ).

A.①③
B.②④
C.②③
D.③④

参考答案

参考解析
解析:
更多 “设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ). A.①③ B.②④ C.②③ D.③④” 相关考题
考题 若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵

考题 设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

考题 设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:   (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)   (2)若r(A)≥r(B),则AX=0的解都是BX=0的解   (3)若AX=0与BX=0同解,则r(A)-r(B)   (4)若r(A)=r(B),则AX=0与BX=0同解   以上命题正确的是().A.(1)(2) B.(1)(3) C.(2)(4) D.(3)(4)

考题 设矩阵A与B等价,则必有( ) A.A的行向量与B的行向量等价 B.A的行向量与B的行向量等价 C.Ax=0与Bx=0同解 D.Ax=0与Bx=0的基础解系中向量个数相同

考题 设A是m×n阶矩阵,则下列命题正确的是().A.若mB.若m>n,则方程组AX=b一定有唯一解 C.若r(A)=n,则方程组AX=b一定有唯一解 D.若r(A)=m,则方程组AX=b一定有解

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C: B. C.A总可以经过初等变换化为单位矩阵E: D.以上都不对.

考题 设A,B为n阶矩阵,考虑以下命题:①若A,B为等价矩阵,则A,B的行向量组等价②若行列式.,则A,B为等价矩阵③若与都只有零解,则A,B为等价矩阵④若A,B为相似矩阵,则与的解空间的维数相同以上命题中正确的是( ). A.①③ B.②④ C.②③ D.③④

考题 设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解 B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解 C.若方程组AX=b无解,则方程组AX=0一定有非零解 D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

考题 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C= A.E B.-E C.A D.-A

考题 设有齐次线性方程组Ax=0和Bx=0,其中A,B均m×n矩阵,现有4个命题:   ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);   ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;   ③若Ax=0与Bx=0同解,则秩(A)=秩(B);   ④若秩(A)=秩(B)则Ax=0与Bx=0同解;   以上命题中正确的是A.①②. B.①③. C.②④. D.③④,

考题 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

考题 设a为N阶可逆矩阵,则( ). A.若AB=CB,则a=C B. C.A总可以经过初等变换化为单位矩阵E D.以上都不对

考题 设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=O B.A=E C.若A不可逆,则A=O D.若A可逆,则A=E

考题 设n阶矩阵A与B等价, 则必须

考题 下列结论中正确的是(  )。 A、 矩阵A的行秩与列秩可以不等 B、 秩为r的矩阵中,所有r阶子式均不为零 C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零 D、 秩为r的矩阵中,不存在等于零的r-1阶子式

考题 设矩阵与等价,则a=

考题 设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.

考题 设A,B,C均为n阶矩阵,若AB=C,且B可逆,则 A.A矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的列向量组与矩阵B的列向量组等价

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④

考题 若一个n阶矩阵A中的元素满足:Aij=Aji(0=I,j=n-1)则称A为()矩阵;若主对角线上方(或下方)的所有元素均为零时,称该矩阵为()。

考题 单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。A r(A)=m,r(B)=mB r(A)=m,r(B)=nC r(A)=n,r(B)=mD r(A)=n,r(B)=n

考题 单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A 等价B 相似C 合同D 正交

考题 单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A ①②B ①③C ②④D ③④

考题 单选题若A为m×n矩阵,B为n×m矩阵,则(  )。A 当m>n时,ABX(→)=0(→)必有非零解B 当m>n时,AB必可逆C 当n>m时,ABX(→)=0(→)只有零解D 当n>m时,必有r(AB)<m

考题 单选题下列结论中正确的是( )A 矩阵A的行秩与列秩可以不等B 秩为r的矩阵中,所有r阶子式均不为零C 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D 秩为r的矩阵中,不存在等于零的r-1阶子式