网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米

A.180
B.54
C.54或48
D.64
E.180或64

参考答案

参考解析
解析:没有红色的小正方体位于原来的长方体的内部,这4个小正方体可能排成一字形或田字形;若为一字形:棱长分别为1,1,4,故原长方体的长宽高为3,3,6,体积为3×3×6=54;若为田字形:棱长分别为2,2,1,故原长方体的长宽高为4,4,3,体积为4×4×3=48
更多 “将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米A.180 B.54 C.54或48 D.64 E.180或64” 相关考题
考题 分别说一说什么是长方体或正方体的表面积、体积。

考题 将27个边长为1的小正方体垒成一个大正方体,然后把大正方体全部涂成红色,请问:三面都被涂成红色的小正方体有多少个?()。A.4B.6C.8D.12

考题 如果把一个体积为125立厘米的正方体铁块切割成体积相等的8个小正方体,则每个小正方体铁块的表面积是( )。A.6.25平方厘米B.15.625平方厘米C.16.5平方厘米D.37.5平方厘米

考题 一个体积为3立方分米的长方体,现将它等分成体积为3立方厘米的长方体,则可分成多少个?( )A.10B.100C.1 000D.10 000

考题 把一个64cm×40cm×24cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。A.73280cm2B.54680cm2C.69450cm2D.46080cm2

考题 一个正方体木块的体积为1000厘米³,现要把它锯成八块,同样大小的正方体小木块,小木块的棱长是多少?

考题 一个体积为l立方米的立方体,把它切成1立方厘米的小正方体,然后把这些小正方体排成一列,组成一个长方体。这个长方体长多少厘米?( )A.10B.1000000C.200D.1000

考题 如果把一个体积为125立方厘米的正方体铁块切割成体积相等的8个小正方体,则每个小正方体铁块的表面积是:A.6.25平方厘米B.15.625平方厘米C.16.5平方厘米D.37.5平方厘米

考题 把一个64Cmx40Cmx24Cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。A.73280cm2B.54680cm2C.69450cm2D.46080cm2

考题 一个正方体和一个长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方米。原来正方体的表面积是多少平方厘米?

考题 将一个表面积为36平方米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是( )A.24平方米 B.30平方米 C.36平方米 D.42平方米

考题 210个边长为1厘米的小正方体组成的长方体,其表面积最小为多少?( )A. B. C. D.

考题 某加工厂要将一个表面积为384平方厘米的正方体金属原材料切割成体积为8立方厘米的小正方体半成品,如果不计损失,这样的小正方体可以加工的个数为A. 64 B. 36 C. 27 D. 16

考题 用n个棱长是a cm的小正方体可以摆出“一”字形长方体,如图,n个小正方体拼在一起 时,这个长方体表面积是_______cm2。

考题 1000个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后,再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个: A 490 B 488 C 484 D 480

考题 有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。A.10 B.11 C.12 D.13

考题 一个长方体木块恰能切割成五个正方体木块,五个正方体木块表面积之和比原来的长方体木块的表面积增加了200cm2。则长方体木块的体积为多少?A.625cm3 B.125cm3 C.500cm3 D.750cm3

考题 将一个表面积为72平方米的正方体平分为两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是多少平方米?A.56 B.64 C.72 D.84

考题 一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是( )个。A.490 B.488 C.484 D.480

考题 将长、宽、高分别为12、9、6的长方体切割成正方体,且切割后无剩余,则能切割成相同正方体的最少个数为( )A.3 B.6 C.24 D.96 E.648

考题 把若干个体积相等的正方体拼成一个大正方体,在表面涂上红色,已知一面涂色的小正方体有96个,则两面涂色的小正方体有( )个A.48 B.60 C.64 D.24 E.32

考题 小学数学《长方体和正方体的表面积》 一、考题回顾 题目来源:5月18日 上午 天津市 面试考题 试讲题目 1.题目:长方体和正方体的表面积 2.内容: 3.基本要求: (1)10分钟试讲; (2)引导学生理解长方体和正方体的表面积计算公式; (3)要有适当板书。 答辩题目 1.本节课的教学目标是什么? 2.如何做好课堂提问?

考题 将一个8厘米×8厘米×1厘米的白色长方体木块的外表面涂上黑色颜料,然后将其切成64个棱长1厘米的小正方体,再用这些小正方体堆成棱长4厘米的大正方体,且使黑色的面向外露的面积要尽量大,问大正方体的表面上有多少平方厘米是黑色的? A. 88 B. 84 C. 96 D. 92

考题 连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘 米,问正八面体的体积为多少立方厘米?( )

考题 边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是( )