网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
当t0.05,就证明两总体均数相同。()

此题为判断题(对,错)。


参考答案

更多 “ 当t0.05,就证明两总体均数相同。() 此题为判断题(对,错)。 ” 相关考题
考题 t>t(0.05v)统计上可认为A.两总体均数不同B.两总体均数相同C.两样本均数不同D.两样本均数相同E.两总体均数相同,两样本均数不同

考题 对于正偏态分布的的总体,当样本含量足够大时,样本均数的分布近似为标准正态分布。() 此题为判断题(对,错)。

考题 两总体的标志平均值相等,则两总体标志变异程度相同。() 此题为判断题(对,错)。

考题 当样本足够大时,样本分布与总体分布相同。() 此题为判断题(对,错)。

考题 t检验结果t=1.5,可认为两总体均数差别无统计意义。() 此题为判断题(对,错)。

考题 两种质量相同的物质,分子量AB,其摩尔数相同。() 此题为判断题(对,错)。

考题 作两样本均数差别的假设检验,当P0.05时,表示所对应的两总体均数相差较小。() 此题为判断题(对,错)。

考题 在两样本均数比较的z检验中,若z≥z0.05,则在α=0.05水平上可认为两总体均数不等。() 此题为判断题(对,错)。

考题 作两样本均数差别的比较,当P0.01时,统计上认为两总体均数不同,此时推断错误的可能性小于0.01。() 此题为判断题(对,错)。

考题 在t检验中,两样本差别有意义时,统计上认为它们分别代表的两总体均数不同。() 此题为判断题(对,错)。

考题 在比较两样本均数的假设检验中,结果t=3.24,t0.05(v)=2.086,t0.01(v)=2.845。正确的结论是 A、两样本均数不同B、两样本均数差异很大C、两总体均数差异很大D、两样本均数来自同一总体E、两样本均数来自不同总体

考题 当混凝土强度的波动规律服从正态分布时,在相同强度保证率条件下,强度均方差S大,配制强度就低。() 此题为判断题(对,错)。

考题 样本均数的95%可信区间可以解释为:“有95%的把握认为总体均数在这个围绕样本均数的区间内”。() 此题为判断题(对,错)。

考题 α=0.05,t>t0.05,ν,统计上可认为( ) A、两总体均数差别无显著意义B、两样本均数差别无显著意义C、两总体均数差别有显著意义D、两样本均数差别有显著意义E、以上均不对

考题 检验用于推断样本均数与总体均数的比较以及两个样本均数间的比较。( )此题为判断题(对,错)。

考题 来自同一总体的两样本,下列哪个指标小的样本均数估计总体均数时更可靠 A、 S B、CV C、S D、 t0.05,v·S E、X

考题 统计上可认为A.两总体均数不同 B.两总体均数相同 C.两样本均数不同 D.两样本均数相同 E.两总体均数相同,两样本均数不同

考题 两个样本均数比较t检验(α=0.05),当︱t︱>to0.05,(υ)时,统计结论为A.两样本均数相同 B.两总体均数不同 C.两总体均数差别很大 D.两总体均数相同 E.两样本均数不同

考题 统计上可认为()A两总体均数不同B两总体均数相同C两样本均数不同D两样本均数相同E两总体均数相同,两样本均数不同

考题 t<t0.05(n’)统计学上认为()A、两总体均数差别无显著性B、两总体均数差别有显著性C、两样本均数差别无显著性D、两样本均数差别有显著性E、两样本均数差别有高度显著性

考题 两个样本均数比较t检验(α=0.05),当︱t︱>to0.05,(υ)时,统计结论为()A、两样本均数不同B、两样本均数相同C、两总体均数不同D、两总体均数相同E、两总体均数差别很大

考题 t检验时,当t<t0.05(v),P>0.05,就证明两总体均数相同。

考题 单选题T<t0.05,理论上认为(  )。A 总体均数差别无统计学意义B 总体均数差别有统计学意义C 样本均数差别无统计学意义D 样本均数差别有统计学意义E 两总体均数不同

考题 单选题两个样本均数比较t检验(α=0.05),当︱t︱>to0.05,(υ)时,统计结论为()A 两样本均数不同B 两样本均数相同C 两总体均数不同D 两总体均数相同E 两总体均数差别很大

考题 单选题t<t0.05(n’)统计学上认为()A 两总体均数差别无显著性B 两总体均数差别有显著性C 两样本均数差别无显著性D 两样本均数差别有显著性E 两样本均数差别有高度显著性

考题 判断题不能用假设检验证明两总体均数相等。()A 对B 错

考题 单选题在比较两样本均数的假设检验中,结果t=3.24,t0.05(v)=2.086,t0.01(v)=2.845。正确的结论是()。A 两样本均数不同B 两样本均数差异很大C 两总体均数差异很大D 两样本均数来自同一总体E 两样本均数来自不同总体