网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明
:为参数σ^2的无偏估计量,

参考答案
参考解析
解析:

更多 “设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,” 相关考题
考题
设X1,X2,…Xn是简单随机样本,则有( )。
A. X1,X2,…Xn相互独立 B. X1,X2,…Xn有相同分布
C. X1,X2,…Xn彼此相等 D.X1与(X1,+X2)/2同分布
E.X1与Xn的均值相等
考题
设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:
(1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).
考题
设总体X的分布函数为
其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
(Ⅰ)求EX与EX^2;
(Ⅱ)求θ的最大似然估计量.
(Ⅲ)是否存在实数a,使得对任何ε>0,都有?
考题
问答题设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。
热门标签
最新试卷