网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设U为可逆矩阵, , 证明为正定二次型


参考答案

参考解析
解析:
更多 “设U为可逆矩阵, , 证明为正定二次型” 相关考题
考题 二次型为正定的充要条件是对应的矩阵为正定矩阵。() 此题为判断题(对,错)。

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A,B是正定矩阵,则A+B为()

考题 设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

考题 设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

考题 实二次型矩阵A正定的充分必要条件是( )。A.二次型的标准形的n个系数全为正 B.|A|>0 C.矩阵A的特征值为2 D.r(A)=n

考题 设A,B为同阶可逆矩阵,则( )。A.AB=BA B. C. D.存在可逆矩阵P和Q,使PAQ=B

考题 设A,B为n阶可逆矩阵,则().

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设二次型. (Ⅰ)求二次型的矩阵的所有特征值; (Ⅱ)若二次型的规范形为,求的值

考题 设A是n阶正定矩阵,证明:|E+A|>1.

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A,B,A+B都是可逆矩阵,证明可逆,并求其逆矩阵.

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使,即A与单位阵E合同

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

考题 设二次型的正惯性指数p=2,负惯性指数q=0,且可用可逆线性变换x=Cy将其化为二次型(1)求常数a; (2)求可逆线性变换矩阵C

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A为3阶矩阵.P为3阶可逆矩阵,且 A. B. C. D.

考题 若矩阵A的所有奇数阶主子式小于零,而所有偶数阶主子式大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型

考题 若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A、正定B、正定二次型C、负定D、负定二次型

考题 单选题若矩阵A的所有奇数阶主子式小于零,而所有偶数阶主子式大于零,则该矩阵为()矩阵。A 正定B 正定二次型C 负定D 负定二次型

考题 单选题若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。A 正定B 正定二次型C 负定D 负定二次型