网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.


参考答案

参考解析
解析:
更多 “设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.” 相关考题
考题 n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵

考题 设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

考题 设A,B为同阶可逆矩阵,则( )。A.AB=BA B. C. D.存在可逆矩阵P和Q,使PAQ=B

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且

考题 设A是n阶正定矩阵,证明:|E+A|>1.

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化

考题 试证:如果A,B都是n阶正定矩阵,则A+B也是正定的

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设A和B都是mn实矩阵,满足r(A+B)=n,证明正定

考题 证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.

考题 设U为可逆矩阵, , 证明为正定二次型

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

考题 设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=

考题 设a为N阶可逆矩阵,则( ).《》( )

考题 设A为3阶矩阵.P为3阶可逆矩阵,且 A. B. C. D.

考题 设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交

考题 单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A 等价B 相似C 合同D 正交