网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


参考答案

参考解析
解析:
更多 “设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,” 相关考题
考题 n阶对称矩阵A正定的充分必要条件是()。 A、|A|0B、存在n阶方阵C使A=CTCC、负惯性指标为零D、各阶顺序主子式均为正数

考题 n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B) B.|A|=|B| C.A~B D.A,B与同一个实对称矩阵合同

考题 N阶实对称矩阵A正定的充分必要条件是(). A.A无负特征值 B.A是满秩矩阵 C.A的每个特征值都是单值 D.A^-1是正定矩阵

考题 设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>m B.r=m C.rD.r≥m

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。A.所有k级子式为正(k=1,2,…,n) B.A的所有特征值非负 C. D.秩(A)=n

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

考题 设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( ) A.r(A)=r(B)=m B.r(A)=m r(B)=n C.r(A)=n r(B)=m D.r(A)=r(B)=n

考题 设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.

考题 设n阶实对称矩阵A的秩为r,且满足,求 ①二次型的标准形; ②行列式的值,其中E为单位矩阵

考题 试证:如果A,B都是n阶正定矩阵,则A+B也是正定的

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A和B都是mn实矩阵,满足r(A+B)=n,证明正定

考题 设A,B为n阶正定矩阵.证明:A+B为正定矩阵.

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=m B.秩r(A)=m,秩r(B)=n C.秩r(A)=n,秩r(B)=m D.秩r(A)=n,秩r(B)=n

考题 设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m B.r(A)=m,r(B)=n C.r(A)=n,r(B)=m D.r(A)=n,r(B)=n

考题 n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n

考题 单选题n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A 所有k级子式为正(k=1,2,…,n)B A的所有特征值非负C 秩(A)=n

考题 单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。A r(A)=m,r(B)=mB r(A)=m,r(B)=nC r(A)=n,r(B)=mD r(A)=n,r(B)=n

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<r1C r=r1D r与r1的关系依C而定

考题 单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。A r>r1B r<rlC r=rlD r与r1的关系依C而定

考题 问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。