网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,
参考答案
参考解析
解析:
更多 “设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,” 相关考题
考题
设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )
A.r(A)=r(B)=m
B.r(A)=m r(B)=n
C.r(A)=n r(B)=m
D.r(A)=r(B)=n
考题
设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则
A.A秩r(A)=m,秩r(B)=m
B.秩r(A)=m,秩r(B)=n
C.秩r(A)=n,秩r(B)=m
D.秩r(A)=n,秩r(B)=n
考题
设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=m
B.r(A)=m,r(B)=n
C.r(A)=n,r(B)=m
D.r(A)=n,r(B)=n
考题
单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( )。A
r(A)=m,r(B)=mB
r(A)=m,r(B)=nC
r(A)=n,r(B)=mD
r(A)=n,r(B)=n
考题
问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。
热门标签
最新试卷