网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使,即A与单位阵E合同


参考答案

参考解析
解析:
更多 “证明对称阵A为正定的充分必要条件是:存在可逆矩阵U,使,即A与单位阵E合同” 相关考题
考题 n阶对称矩阵A正定的充分必要条件是()。 A、|A|0B、存在n阶方阵C使A=CTCC、负惯性指标为零D、各阶顺序主子式均为正数

考题 n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数

考题 设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同

考题 设A是欧氏空间V关于基a₁,a₂...an的度量矩阵,a₁,a₂...an是标准正交基的充分必要条件是()。A. A是正交矩阵B. A是单位矩阵C. A是对称阵D. A是矩阵

考题 设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B) B.|A|=|B| C.A~B D.A,B与同一个实对称矩阵合同

考题 N阶实对称矩阵A正定的充分必要条件是(). A.A无负特征值 B.A是满秩矩阵 C.A的每个特征值都是单值 D.A^-1是正定矩阵

考题 设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().

考题 对称矩阵A正定的充分必要条件是|A|>O

考题 设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵 B.实对称矩阵 C.正定矩阵 D.正交矩阵

考题 设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同 B.矩阵A的特征值都是实数 C.存在可逆矩阵P,使P^-1AP为对角阵 D.存在正交阵Q,使Q^TAQ为对角阵

考题 设A是3阶方阵,A能与对角阵相似的充分必要条件是( ).A. B.A是实对称阵 C.A有3个线性无关的特征向量 D.A有3个不同的特征值

考题 设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。

考题 设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA

考题 设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

考题 设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化

考题 设矩阵相似于矩阵. (1)求a,b的值;(2)求可逆矩阵P,使为对角阵

考题 设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.

考题 设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.

考题 设U为可逆矩阵, , 证明为正定二次型

考题 设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.

考题 设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

考题 设P为可逆矩阵,A=P^TP.证明:A是正定矩阵.

考题 节点导纳矩阵是( )。A.对称的满阵 B.对称的稀疏矩阵 C.不对称的满阵 D.不对称的稀疏矩阵

考题 设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().A、A+2EB、A+ΛC、ABD、A-B

考题 设A是3阶方阵,A能与对角阵相似的充分必要条件是().A、存在可逆阵P,使得P-1AP=BB、A是实对称阵C、A有3个线性无关的特征向量D、A有3个不同的特征值

考题 单选题设A是3阶方阵,A能与对角阵相似的充分必要条件是().A 存在可逆阵P,使得P-1AP=BB A是实对称阵C A有3个线性无关的特征向量D A有3个不同的特征值

考题 单选题设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().A A+2EB A+ΛC ABD A-B