网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
设(Ⅰ)和(Ⅱ)都是个四元齐次方程组,已知(1,0,1,1)T,(-1,0,1,0)T,(0,1,1,0)T是(Ⅰ)的一个基础解系,(0,1,0,1)T,(1,1,-1,0)T是 (Ⅱ) 的一个基础解系.求(Ⅰ)和(Ⅱ)的公共解
参考答案
参考解析
解析:
更多 “设(Ⅰ)和(Ⅱ)都是个四元齐次方程组,已知(1,0,1,1)T,(-1,0,1,0)T,(0,1,1,0)T是(Ⅰ)的一个基础解系,(0,1,0,1)T,(1,1,-1,0)T是 (Ⅱ) 的一个基础解系.求(Ⅰ)和(Ⅱ)的公共解” 相关考题
考题
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()
A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
考题
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.
考题
已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。
A、al a2
B、a1 a3
C、al a2 a3
D、a2 a3 a4
考题
齐次线性方程组的基础解系为()。A、α1=(1,1,1,0)T,α2=(-1,-1,1,0)TB、α1=(2,1,0,1)T,α2=(-1,-1,0)TC、α1=(1,1,1,0)T,α2=(1,0,0,1)TD、α1=(2,1,0,1)T,α2=(-2,-1,0,1)T
考题
单选题齐次线性方程组的基础解系为()。A
α1=(1,1,1,0)T,α2=(-1,-1,1,0)TB
α1=(2,1,0,1)T,α2=(-1,-1,0)TC
α1=(1,1,1,0)T,α2=(1,0,0,1)TD
α1=(2,1,0,1)T,α2=(-2,-1,0,1)T
考题
问答题设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。
考题
单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是( )。A
k(0,1,1,1)T+(1,1,0,2)T/2B
k(0,1,-1,-1)T+(1,1,0,2)T/2C
k(0,1,1,-1)T+(1,1,0,2)T/2D
k(0,1,-1,1)T+(1,1,0,2)T/2
考题
单选题已知非齐次线性方程组有无限多个解,则t等于().A
-1B
1C
4D
-1或4
热门标签
最新试卷