网友您好, 请在下方输入框内输入要搜索的题目:

题目内容 (请给出正确答案)
设(Ⅰ)和(Ⅱ)都是个四元齐次方程组,已知(1,0,1,1)T,(-1,0,1,0)T,(0,1,1,0)T是(Ⅰ)的一个基础解系,(0,1,0,1)T,(1,1,-1,0)T是 (Ⅱ) 的一个基础解系.求(Ⅰ)和(Ⅱ)的公共解


参考答案

参考解析
解析:
更多 “设(Ⅰ)和(Ⅱ)都是个四元齐次方程组,已知(1,0,1,1)T,(-1,0,1,0)T,(0,1,1,0)T是(Ⅰ)的一个基础解系,(0,1,0,1)T,(1,1,-1,0)T是 (Ⅱ) 的一个基础解系.求(Ⅰ)和(Ⅱ)的公共解” 相关考题
考题 设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

考题 设n元齐次线性方程组Ax=o,r(A)=rn,则基础解系含有解向量的个数n个。() 此题为判断题(对,错)。

考题 设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在. B.仅含一个非零解向量. C.含有两个线性无关的解向量. D.含有三个线性无关的解向量.

考题 设B是三阶非零矩阵,已知B的每一列都是方程组 的解,则t等于 A.0 B.2 C.1 D.-1

考题 求齐次线性方程组的基础解系

考题 设(Ⅰ),(Ⅱ)   (1)求(Ⅰ),(Ⅱ)的基础解系;(2)求(Ⅰ),(Ⅱ)的公共解.

考题 设为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用线性表示,并且r(A)=n-3,证明{图2为AX=0的一个基础解系.}

考题 设齐次线性方程组      其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.

考题 设有下列线性方程组(Ⅰ)和(Ⅱ) (Ⅰ) (Ⅱ) (1) 求方程组(Ⅰ)的通解; (2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解?

考题 设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为,(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解

考题 求方程组的一个基础解系和通解。

考题 已知下列非齐次线性方程组(Ⅰ),(Ⅱ)      (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解.   (2)当方程组中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.

考题 设(Ⅰ)和(Ⅱ)都是3元非齐次方程组,(Ⅰ)有通解;(Ⅱ)有通解。求(Ⅰ)和(Ⅱ) 的公共解

考题 设,E为3阶单位矩阵(1)求方程组的一个基础解系; (2)求满足的所有矩阵B

考题 设线性方程组(I)与(II)有公共的非零解,其中(I)为,(II)有基础解系,求p,t的值和全部公共解

考题 设A=,E为三阶单位矩阵.   (Ⅰ)求方程组Ax=0的一个基础解系;   (Ⅱ)求满足AB=E的所有矩阵B.

考题 已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.

考题 设B是三阶非零矩阵,已知B的每一列都是方程组的解,则t等于 A.0 B.2 C.1 D.-1

考题 已知al,a2,a3,a4是四维非零列向量,记A=(a1,a2,a3,a4),A+是A的伴随矩阵,若齐次方程组AX=0的基础解系为(1,0,-2,0)T,则AX=0的基础解系为( )。 A、al a2 B、a1 a3 C、al a2 a3 D、a2 a3 a4

考题 求齐次线性方程组的全部解(要求用基础解系表示)。

考题 设B是3阶非零矩阵,已知B的每一列都是方程组的解,则t等于( )。 A. 0 B. 2 C. -1 D. 1

考题 已知非齐次线性方程组有无限多个解,则t等于().A、-1B、1C、4D、-1或4

考题 齐次线性方程组的基础解系为()。A、α1=(1,1,1,0)T,α2=(-1,-1,1,0)TB、α1=(2,1,0,1)T,α2=(-1,-1,0)TC、α1=(1,1,1,0)T,α2=(1,0,0,1)TD、α1=(2,1,0,1)T,α2=(-2,-1,0,1)T

考题 单选题齐次线性方程组的基础解系为()。A α1=(1,1,1,0)T,α2=(-1,-1,1,0)TB α1=(2,1,0,1)T,α2=(-1,-1,0)TC α1=(1,1,1,0)T,α2=(1,0,0,1)TD α1=(2,1,0,1)T,α2=(-2,-1,0,1)T

考题 问答题设η(→)1,η(→)2,η(→)3,η(→)4是五元非齐次线性方程组AX(→)=b(→)的四个解,且秩r(A)=3,又设:η(→)1+η(→)2+η(→)3+η(→)4=(4,-8,-12,12,16)T,η(→)1+2η(→)2+2η(→)3+η(→)4=(6,18,-18,-30,12)T,2η(→)1+2η(→)2+η(→)3+η(→)4=(18,-30,-36,30,36)T,求方程组AX(→)=b(→)的通解。

考题 单选题已知四元非齐次方程组AX(→)=b(→),r(A)=3,α(→)1,α(→)2,α(→)3是它的三个解向量,且α(→)1+α(→)2=(1,1,0,2)T,α(→)2+α(→)3=(l,0,1,3)T,则AX(→)=b(→)的通解是(  )。A k(0,1,1,1)T+(1,1,0,2)T/2B k(0,1,-1,-1)T+(1,1,0,2)T/2C k(0,1,1,-1)T+(1,1,0,2)T/2D k(0,1,-1,1)T+(1,1,0,2)T/2

考题 单选题已知非齐次线性方程组有无限多个解,则t等于().A -1B 1C 4D -1或4