网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
z=(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?
A.必要条件
B.充分条件
C.充要条件
D.无关条件
B.充分条件
C.充要条件
D.无关条件
参考答案
参考解析
解析:提示:函数在P0(x0,y0)可微,则在该点偏导一定存在。
更多 “z=(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件? A.必要条件 B.充分条件 C.充要条件 D.无关条件 ” 相关考题
考题
下列结论正确的是( ).A.x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
B.z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
C.z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
D.z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
考题
设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
考题
函数z=f(x,y)在P0 (x0,y0)处可微分,且f'x (x0,y0)=0,f'y(x0,y0)=0,则f(x,y)在P0 (x0,y0)处有什么极值情况?
A.必有极大值 B.必有极小值
C.可能取得极值 D.必无极值
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
考题
下列结论正确的是().A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件
考题
单选题对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?A
必要条件而非充分条件B
充分条件而非必要条件C
充分必要条件D
既非充分又非必要条件
考题
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A
②⇒③⇒①B
③⇒②⇒①C
③⇒④⇒①D
③⇒①⇒④
考题
单选题函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()A
必有极大值B
必有极小值C
可能取得极值D
必无极值
考题
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A
只能确定一个具有连续偏导数的隐函数z=z(x,y)B
可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C
可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D
可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
考题
单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是( )。A
f(x0,y)在y=y0处的导数等于零B
f(x0,y)在y=y0处的导数大于零C
f(x0,y)在y=y0处的导数小于零D
f(x0,y)在y=y0处的导数不存在
热门标签
最新试卷