网友您好, 请在下方输入框内输入要搜索的题目:
题目内容
(请给出正确答案)
函数y=f(x)在点x=x0处左右极限都存在并且相等,是它在该点有极限的()
A.必要条件
B.充分条件
C.充要条件
D.无关条件
B.充分条件
C.充要条件
D.无关条件
参考答案
参考解析
解析:根据函数在一点处极限存在的充要性定理可知选C.
更多 “函数y=f(x)在点x=x0处左右极限都存在并且相等,是它在该点有极限的()A.必要条件 B.充分条件 C.充要条件 D.无关条件” 相关考题
考题
以下结论正确的是()。
A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.
考题
下列命题正确的是()A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
D.若函数f(x)在点x0处连续,则f'(x0)一定存在
考题
下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续
考题
下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续
考题
单选题以下关于二元函数的连续性的说法正确是( )。A
若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B
若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C
若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D
以上说法都不对
考题
单选题对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?A
必要条件而非充分条件B
充分条件而非必要条件C
充分必要条件D
既非充分又非必要条件
考题
单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有( )。A
②⇒③⇒①B
③⇒②⇒①C
③⇒④⇒①D
③⇒①⇒④
考题
判断题函数在一点处的左右极限都存在,则函数在这一点的极限存在。A
对B
错
热门标签
最新试卷